DEPARTMENT OF MATHEMATICS

MATHS 255	Assignment 4	Due: May 12 2005

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

1. (15 marks)

- (a) Find all solutions to the following Diophantine equations:
 - (i) (4 marks) 946x + 374y = 18.
 - (ii) (4 marks) 976x + 3742y = 44.
- (b) (7 marks) Find all solutions to the Diophantine equation 976x + 374y = 22 with $0 \le x \le 40$

2. (20 marks)

(a) (5 marks) Find all integers $x \in \mathbb{Z}$ such that

$$2x^2 - 3x - 4 \equiv 0 \pmod{5}.$$

(b) (7 marks) Find all integers $x \in \mathbb{Z}$ such that

$$189x \equiv 28 \pmod{56}.$$

(c) (8 marks) Find the smallest positive solution $x \in \mathbb{Z}$ such that

$$946x \equiv 26 \pmod{2316}.$$

3. (8 marks) Use congruences to show that for any natural number $n \in \mathbb{N}$, the number 21(15n + 27)(n + 28) is divisible by 14.

4. (17 marks)

- (a) (5 marks) Let $a(x) = x^3 2x 1$ and $b(x) = x^3 + 5x^2 + 2x 2$ be polynomials of $\mathbb{R}[x]$. Use the Euclidean Algorithm for $\mathbb{R}[x]$ to find the greatest common monic divisor in $\mathbb{R}[x]$.
- (b) Let f(x) and g(x) be polynomials in $\mathbb{Z}_5[x]$ defined by

$$f(x) = x^4 + 2x^3 + 4x + 1$$
, $g(x) = 3x^3 + x^2 + x + 2$.

Here for simplicity, we denote \bar{a} by a for $\bar{a} \in \mathbb{Z}_5$.

- (i) (6 marks) Find quotient q(x) and remainder r(x) when f(x) is divided by g(x).
- (ii) (6 marks) Find the greatest common monic divisor of f(x) and g(x) and find polynomials u(x) and v(x) such that

$$d(x) = f(x)u(x) + g(x)v(x).$$

- **5.** (8 marks) Let (G, *) be a group with identity e, and $a, b, c \in G$.
 - (a) If a * b = c * b, then a = c.
 - (b) If a * b = e, then b * a = e.
- 6. (12 marks) Let $A = \{x \in \mathbb{R} : x \neq 0\}$ be the set of all non-zero real numbers and $T = \mathbb{R} \setminus \mathbb{Q}$. For any $x, y \in \mathbb{R}$ define x * y by

$$x * y = 3xy,$$

where xy is the ordinary multiplication of x and y in \mathbb{R} .

- (a) (9 marks) Show that (A, *) is an abelian group.
- (b) (3 marks) Show that * is not a binary operation on T.