DEPARTMENT OF MATHEMATICS

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- **1.** (18 marks) Let $A = \{x \in \mathbb{Z} : -9 \le x \le 9\}$. Let $f : A \to A$ be defined as follows: For all $x \in A$, f(x) is the remainder when x is divided by 5. [You are not asked to prove that f is a function.]
 - (a) (i) Find f(7) and f(-7).
 - (ii) Determine whether or not f is one-to-one.
 - (iii) Determine whether or not f is onto.
 - (b) Let $g : \mathcal{P}(A) \to \mathcal{P}(A)$ be defined as follows: For all $X \in \mathcal{P}(A), g(X) = \{a \in A : f(a) \in X\}$. [You are not asked to prove that g is a function.]
 - (i) What is $g(\{-1, 0, 1\})$?
 - (ii) Determine whether or not g is one-to-one.
 - (iii) Determine whether or not g is onto.
 - (c) A relation is defined on A as follows: For all $a, b \in A$, $a \sim b$ if and only if f(a) = f(b).
 - (i) Show that \sim is an equivalence relation.
 - (ii) List all elements of the set $S = \{a \in A : a \sim 7\}$.
 - (iii) Write down all of the equivalence classes under the relation \sim .
- 2. (8 marks) Let $A = \{x \in \mathbb{R} : x \neq 3\}, B = \{x \in \mathbb{R} : x \neq 5\}$ and define $f : A \to B$ by $f(x) = \frac{5x}{x-3}$.
 - (a) (6 marks) Show that f is one-to-one and onto.
 - (b) (2 marks) Determine the inverse f^{-1} of f.
- **3.** (15 marks) For $x \in \mathbb{Z}$, define a function f by

$$f(x) = 2x + 2$$
 if $x \ge 0$,
= $-2x - 1$ if $x < 0$.

- (a) (6 marks) Show that f is a bijection from \mathbb{Z} to \mathbb{N} .
- (b) (3 marks) Give an example of a function $f : \mathbb{Z} \to \mathbb{N}$ that is one-to-one but not onto
- (c) (4 marks) Give an example of a function $f : \mathbb{Z} \to \mathbb{N}$ that is onto but not one-to-one
- (d) (2 marks) Give an example of a function $f : \mathbb{Z} \to \mathbb{N}$ that is neither one-to-one nor onto.

4. (10 marks)

- (a) Let $A = \{-\frac{1}{n} : n \in \mathbb{N}\}$. Show that $(A, \leq) \simeq (\mathbb{N}, \leq)$ as posets.
- (b) Let $B = \{-\frac{1}{n} : n \in \mathbb{Z} \setminus \{0\}\}$. Show that $(B, \leq) \not\simeq (\mathbb{Z} \setminus \{0\}, \leq)$ as posets.

5. (20 marks)

- (a) Let $a, b \in \mathbb{Z}$ not both zero, and $d = \gcd(a, b)$. If $a = da_1$ and $b = db_1$ for some $a_1, b_1 \in \mathbb{Z}$, then show that $\gcd(a_1, b_1) = 1$.
- (b) Let $p \in \mathbb{N}$ be a prime number and $c \in \mathbb{Z}$. Show that either p|c or gcd(c, p) = 1.
- (c) Let $w \in \mathbb{Z}$ be a odd number. Show that w and w + 2 are relatively prime.
- (d) Let a, b be natural numbers. Show that there are infinitely many pairs $s, t \in \mathbb{Z}$ such that gcd(a, b) = as + bt.
- 6. (9 marks) Use the modified version of Euclid's Algorithm to find gcd(a, b) and integers x and y with gcd(a, b) = ax + by for the following pairs of integers.
 - (a) 51 and 288.
 - (b) 357 and 629.
 - (c) 180 and 252.