DEPARTMENT OF MATHEMATICS

MATHS 255	Assignment 2	Due: April 7 2005

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- 1. (6 marks) Translate the following statements into symbols and disprove each of them.
 - (a) For any integers $a, b, c \in \mathbb{Z}$, if ab, ac and bc are even, then a, b, and c are even.
 - (b) There are integers $x, y \in \mathbb{Z}$ such that xy is even but both x and y are odd.
- **2.** (7 marks) Use induction to prove that $7 \mid (4^{2n} 2^n)$ for any natural number *n*.
- **3.** (7 marks) Use induction to prove that for every integer $n \ge 4$, $n! > 2^n$.
- **4.** (8 marks) Let x be an integer. Show by induction that for all $n \in \mathbb{N}$, x^n is even if and only if x is even.
- 5. (8 marks) Let x_1, x_2, x_3, \ldots be a sequence of integers defined recursively by

 $x_1 = 3$, $x_2 = 18$, and $x_n = 6x_{n-1} - 9x_{n-2}$

for integers $n \ge 3$. Conjecture a formula for x_n and prove it using mathematical induction.

- 6. (12 marks) Indicate whether each of the following relations on the given set is reflexive, symmetric, antisymmetric, or transitive. Explain your answers.
 - (a) $A = \{x \in \mathbb{Z} : x < 0\}$ and $x \rho y$ iff 2x + y = 0.
 - (b) $B = \{x \in \mathbb{Q} : x \ge 0\}$ and $x \rho y$ iff x + y = 1.
 - (c) $C = \{a, b, c\}$ and $\rho = \{(a, b), (b, a), (a, c), (b, c), (a, a)\}.$
 - (d) $D = \mathbb{Q}$ and $x \rho y$ iff |x y| < 2.
- **7.** (10 marks) Let A be a set and R a relation on A.
 - (a) (3 marks) Show that there is an equivalence relation Q on A such that $R \subseteq Q$.
 - (b) (4 marks) Let Ω be the set consisting of all equivalence relations containing R and set

$$S := \bigcap_{Q \in \Omega} Q.$$

Show that S is an equivalence relation on A and $R \subseteq S$.

(c) (3 marks) Show that if X is an equivalence relation containing S, then $S \subseteq X$, that is, S is the "smallest" equivalence relation containing S.

- 8. (10 marks) Let ~ be the relation defined on the set of integers \mathbb{Z} by $x \sim y$ if $8 \mid (3x + 5y)$ for $x, y \in \mathbb{Z}$.
 - (a) (7 marks) Show that \sim is an equivalence relation.
 - (b) (**3 marks**) Find the equivalence class [0] containing 0.
- **9.** (12 marks) Let $S = \{2, 4, 5, 6, 8, 10, 15, 18, 20\}$ and let ρ be the relation on S defined by $a \rho b$ if and only if $a \mid b$. Then (S, ρ) is a poset. [You are not asked to prove this.]
 - (a) Draw a lattice diagram of (S, ρ) .
 - (b) Find all maximal and all minimal elements of S.
 - (c) Find a subset of S which has no upper bound and no lower bound.
 - (d) Find the greatest lower bound for $\{4, 6, 10\}$.
 - (e) Determine whether or not the subset $\{2, 4, 20\}$ of S is totally ordered. Explain your answer.