MATHS 255 SC Assignment 1 Due: 17 March 2005

NB: Please deposit your solutions in the appropriate box **by 4 p.m. on the due date**. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

PLEASE SHOW ALL WORKING.

- 1. (10 marks) Which of the following sentences are statements, which are predicates, and which are neither? Translate all the statements and predicates into symbols.
 - (a) Every even integer is a multiple of 4.
 - (b) If n is a prime number then n^2 is not even.
 - (c) x^2 is positive.
 - (d) Find an even number.
 - (e) For any integer n there is an even number m such that m + n = -n.
- 2. (12 marks) Let A, B and R be statements. Construct truth tables for the following statements. For each statement, state whether it is a tautology, a contradiction or neither.
 - (a) $(A \lor \sim B) \land (\sim A \land B)$.
 - (b) $(A \Longrightarrow \sim B) \Longrightarrow \sim B$.
 - (c) $(\sim A \wedge B) \implies (\sim B \wedge A)$.
 - (d) $(\sim A \land (B \lor \sim B)) \iff \sim A$.
- **3.** (23 marks) For any integer n, let A(n) be the statement: "If n = 3q 1 or n = 3q 2 for some $q \in \mathbb{Z}$, then $n^2 = 3k + 1$ for some $k \in \mathbb{Z}$."
 - (a) (3 marks) Write down the negation of A(n).
 - (b) (4 marks) Write down the contrapositive of A(n).
 - (c) (3 marks) Write down the converse of A(n).
 - (d) (5 marks) Use a direct proof to show that $(\forall n \in \mathbb{Z}) A(n)$.
 - (e) (3 marks) Is the contrapositive of A(n) true for all $n \in \mathbb{N}$? Give brief reasons for your answer.
 - (f) (5 marks) Use **proof by contradiction** to show that the converse of A(n) is true for all $n \in \mathbb{Z}$.
- **4.** (20 marks) Let A, B, C, D be sets. Define the Cartesian product (or simply the product) $A \times B$ of A and B by

$$A \times B := \{(a, b) : a \in A \text{ and } b \in B\}.$$

- (a) If C is nonempty, then show that $A \times C \subseteq B \times C$ if and only if $A \subseteq B$.
- (b) Show that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.

- (c) Show that $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- (d) Show that $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$. Show also that in general,

$$(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D).$$

- 5. (6 marks) Let $X = \{1, 9\}$ and let $Y = \{a, b, 9\}$. Find
 - (a) $\mathcal{P}(Y)$ and $\mathcal{P}(X \cap Y)$.
 - (b) $X \cup Y$ and $\mathcal{P}(X \cup Y)$.
- **6.** (9 marks) Let $A = \{1, 2, \dots, 10\}$.
 - (a) Given an example of a set S such that $S \in \mathcal{P}(A)$ and the number of elements of S is 4.
 - (b) Given an example of a set S such that $S \subseteq \mathcal{P}(A)$ and the number of elements of S is 4.
 - (c) Given an example of a two sets S and B such that $S \subseteq \mathcal{P}(A)$, the number of elements of S is $A, B \in S$ and the number of elements of B is A.