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MATHS 255 Lecture outlines for week 9

Monday: Isomorphisms and homomorphisms

We have already used the word “isomorphism” in Section 5.4 of the textbook, when we said that two
partially ordered sets (A,�A) and (B,�B) are order-isomorphic if there is a bijection f : A → B such
that for every x, y ∈ A,

f(x) �B f(y) if and only if x �A y.

We can think of this as meaning that B is really just a “re-labelled” version of A, with exactly the same
structure.

We can do the same thing for groups. In this case, the structure we have is not an order relation but a
binary operation, but the idea—that the isomorphism should preserve the structure—is exactly the same.

Definition. Let (G, ∗) and (H, �) be groups. A homorphism from G to H is a function f : G → H such
that for all x, y ∈ G,

f(x ∗ y) = f(x) � f(y).

An isomorphism from G to H is a homomorphism from G to H which is also a bijection. If there is such
an isomorphism, we say that G and H are isomorphic, written G ≈ H.

Example 1. Let n ∈ N. The function f : Z → Zn given by f(x) = x is a homomorphism, since for every
x, y ∈ Z we have x + y = x + y. However, it is not an isomorphism because it is not 1–1: we have 0 6= n
but 0 = n.

Example 2. Let U(10) = {1, 3, 7, 9}. We define an operation � by declaring that, for x, y ∈ U(10), x � y
is the remainder modulo 10 of x · y. Let Z4 = {0, 1, 2, 3}, and define an operation ∗ on Z4 by declaring
that x ∗ y = x +4 y. So we have the Cayley tables

� 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

∗ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Then the function f : Z4 → U(10) given by f(0) = 1, f(1) = 3, f(2) = 9, f(3) = 7 is an isomorphism.

Proposition 3. Let G and H be groups with identity elements eG and eH respectively, and let f : G → H
be a homorphism. Then f(eG) = eH .

Proposition 4. Let G and H be groups with identity elements eG and eH respectively, and let f : G → H
be an isomorphism. Then, for every x ∈ G, we have

f(x) � f(y) = eH if and only if x ∗ y = eG.

Exercise 5. Let G be the group given by the group table

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Show that G is not isomorphic to Z4.
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Tuesday: Subgroups

From now on we will use a convenient convention: we will omit the group operation symbol, just as when
we are multiplying numbers we omit the ·. So for example we will write gh instead of g ∗h. We also write
g2 for gg, g3 for ggg, g−3 for (g−1)3 and so on.

Definition. A subgroup of a group (G, ∗) is a subset H of G such that ∗ is a group operation on H.

Example 6. Z is a subgroup of the group (R,+).

Example 7. The set H = {R0, R90, R180, R270} is a subgroup of D4.

Proposition 8. A subset H of a group G is a subgroup of G if and only if

1. e ∈ H (where e is the identity element of G);

2. for any x, y ∈ H, xy ∈ H; and

3. for any x ∈ H, x−1 ∈ H.

Proposition 9. A subset H of a group G is a subgroup of G if and only if H 6= ∅ and, for every x, y ∈ H,
xy−1 ∈ H.

Our goal for this section will be to prove Lagrange’s Theorem. This is the statement that if G is a finite
group and H is a subgroup of G then the number of elements of G is a multiple of the number of elements
of H.

To prove this, we will show that we can use the subgroup H to form a partition of G. The number of
elements in each set in the partition will be the same as the number of elements in H. Thus the number
of elements in G is equal to the number of elements in H times the number of sets in the partition. And
that’s all there is to it! Of course, we have to check the details.

Definition. Let H be a subgroup of a group G, and let a ∈ G. We define the left coset of H in G
containing a, written aH, by

aH = { ah : h ∈ H }.

Lemma 10. Let H be a subgroup of G and let a, b ∈ G. If aH ∩ bH 6= ∅ then aH = bH.

Lemma 11. Let H be a subgroup of G. Put

Ω = { aH | a ∈ G }.

Then Ω is a partition of G.

Lemma 12. Let H be a subgroup of G and let a ∈ G. Then the function fa : H → aH defined by
fa(h) = ah is a bijection.

Theorem 13. Let G be a finite group and let H be a subgroup of G. Then |G| is a multiple of |H|.

Thursday: The Real Numbers

In this final section of the course we will study the real numbers. You are already familiar with a number
of theorems about the real numbers: rules for nth root test for determining whether a series converges,
the mean value theorem, and so on. We will be learning how to prove theorems like these.
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Of course, the first thing we have to do is to establish our assumptions, or axioms, and agree that (at
least in principle) everything we prove about the real numbers should come only from these axioms and
not from any pictures we have of how the real numbers look and behave. We will give axioms which say
that the real numbers are a complete, ordered field. There are lots of examples of fields, some of which
are ordered fields. However, we will see that there is, up to isomorphism, only one complete ordered field.
By “up to isomorphism”, we mean that if R and S are both complete ordered fields, then there is an
isomorphism from R to S. In fact, in this case we can do even better: not only is there at least one
isomorphism from R to S, but that isomorphism is unique.

The field axioms [8.2]

Definition. A field is a set F equipped with two binary operations, addition + and multiplication · (as
usual, we often omit the · and write x · y as xy) and distinct elements 0F and 1F with the properties that

• + and · are associative and commutative operations on F ;

• 0F is an identity for + and 1F is an identity for ·;

• · distributes over +, i.e. for all x, y, z ∈ F we have x(y + z) = xy + xz;

• every x ∈ F has an additive inverse −x; and

• every x ∈ F \ {0F } has a multiplicative inverse 1
x .

Example 14. The real numbers R, with the usual addition, multiplication, 0 and 1, form a field.

Example 15. Let F = {E, 0}, with + and · defined by the Cayley Tables

+ E O
E E O
O O E

and
· E O
E E E
O E O

(Note: it may help to think of E and O as “even” and “odd” respectively). Then F is a field, with 0F

being the element E and 1F being the element O.

Exercise 16. In the previous example, what are −E, −O and 1
O?

Example 17. Let p be a prime number. Then Zp is a field, with + and · being +p and ·p respectively,
and 0F and 1F beling 0 and 1 respectively.

Exercise 18. Write up the Cayley Tables for +7 and ·7. For each n with 0 ≤ n ≤ 6 identify −n and for
each n with 1 ≤ n ≤ 6 identify 1

n .

Just as when we wrote down axioms for Z and N, we can deduce many familiar facts about a field from
these axioms.

Proposition 19. Let F be a field. For every x ∈ F we have 0F x = 0F and −(−x) = x.

However, the field axioms do not allow us to prove the familiar fact that for all x 6= 0F we have x 6= −x.

Finally, a little notation: if F is a field and x, y ∈ F , we write x− y for x + (−y), and x÷ y or x
y for x · 1

y .
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Friday: The Order Axioms for R

Axioms for an ordered field [8.3]

Definition. An ordered field is a field F with a subset P such that

• if x, y ∈ P then x + y ∈ P and xy ∈ P ;

• for all x ∈ F , exactly one of the following holds:

◦ x ∈ P ; or

◦ x = 0F ; or

◦ −x ∈ P .

We will see shortly why we use the term “ordered” (and why we use the letter P ). First, we will see some
consequences of these axioms.

Proposition 20. Let F be an ordered field. Then for all x ∈ F \ {0F }, x 6= −x.

Proposition 21. Let F be an ordered field. Then for all x ∈ F \ {0F }, x2 ∈ P . In particular, 1F ∈ P .

Proposition 22. The field Zp (for p a prime number) is not an ordered field, in other words there is no
subset P of Zp which satisfies the ordered field axioms.

Example 23. The real numbers are an ordered field, with P = {x ∈ R : x > 0 }.

Proposition 24. Let F be an ordered field. Define relations < and ≤ on F by declaring that, for x, y ∈ F ,
x < y iff y − x ∈ P , and x ≤ y iff x < y ∨ x = y. Then ≤ is a total order on F .

Whenever we have an ordered field F , we will always assume < and ≤ are the relations defined in the
above proposition.

Proposition 25. Let F be an ordered field. Let a, b, c, d ∈ F .

1. If a < b then a + c < b + c.

2. If a ≤ b then a + c ≤ b + c.

3. If a < b and 0F < c then ac < bc.

4. If 0F < a < b then 0F < 1
b < 1

a .

Example 26. The rational numbers Q are an ordered field, with the usual +, ·, 0 and 1, and with
P = { q ∈ Q : q > 0 }.
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