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MATHS 255 Lecture outlines for week 8

Monday: Polynomials

Definition. A polynomial in x over R (or, more briefly, a polynomial) is an expression of the form

a(x) = a0 + a1x+ · · ·+ anx
n

where a0, a1, . . . , an ∈ R. We may change the order of the terms, and omit the terms where ai = 0. The
numbers a0, a1, . . . , an are called the coefficients.

The set of all such polynomials is denoted by R[x].

Definition. The degree of the term aix
i is i. The degree of the polynomial a0 + a1x+ · · ·+ anx

n is the
greatest i such that ai 6= 0. If there is no such i (i.e. a(x) = 0), then the degree is −∞. We denote the
degree of a(x) by deg a(x).

We can also consider polynomials over other sets of numbers, such as Z[x] (polynomials with integer
coefficients), Q[x] (polynomials with rational coefficients) and so on.

We usually just think of a polynomial over R as being a function from R to R. However, we must be
careful when considering polynomials over Zn: there are infinitely many polynomials, and only finitely
many functions from Zn to Zn, so sometimes different polynomials give the same function. For example,
we have ān − ā = 0 for all ā ∈ Zn, but the polynomials xn − x and 0 are not equal.

Addition of polynomials

Now that we have our set R[x], we will define operations of addition and multiplication on R[x]. First,
we consider addition. To add together two polynomials, we just collect together the terms with the same
degree. In other words, we have

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bnx

n) = (a0 + b0) + (a1 + b1)x+ · · ·+ (an + bn)xn.

If the two polynomials had different degrees, we have to “padd out” the one with the lower degree with
terms 0xi. To put this another way, we have

(a0 + a1x+ · · ·+ anx
n) + (b0 + b1x+ · · ·+ bmx

m) = c0 + c1x+ · · ·+ cNx
N ,

where N = max(n,m), and for 0 ≤ k ≤ N we have ck = ai + bi. [In this definition, if i > n then ai = 0
and if i > m then bi = 0.]

Exercise 1. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree
of a(x) + b(x)?

Multiplication of polynomials

What happens when we multiply together the polynomials a0 + a1x and b0 + b1x+ b2x
2? If we multiply

out the brackets and collect terms together we get

(a0 + a1x)(b0 + b1x+ b2x
2) = a0b0 + a0b1x+ a0b2x

2 + a1b0x+ a1b1x
2 + a1b2x

3

= a0b0 + (a0b1 + a1b0)x+ (a0b2 + a1b1)x2 + a1b2x
3

MATHS 255 Lecture outlines for week 8 Page 1 of 7



In general, we have

(a0 + a1x+ · · ·+ anx
n)(b0 + b1x+ · · ·+ bmx

m) = c0 + c1x+ · · ·+ cn+mx
n+m,

where for 0 ≤ k ≤ n+m, ck =
∑k

i=0 aibk−i. [As before, we take ai = bj = 0 for any i > n, j > m.]

Exercise 2. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree
of a(x)b(x)?

Multiplication in R[x] is rather like multiplication in Z. As in Z, we define a notion of “divisibility”: we
write a(x) | b(x) if there is some c(x) such that b(x) = a(x)c(x). Like Z, and unlike N, this relation in
not antisymmetric. In Z we have that if a | b and b | a then a = ±b. In R[x], we have that if a(x) | b(x)
and b(x) | a(x) then a(x) = cb(x) for some c 6= 0.

The Division Algorithm in R[x]

The structure R[x] is, in many ways, like Z. Particularly interesting is that we have a result similar to
the Division Algorithm in Z. Roughly speaking, it says that we can divide a non-zero polynomial b(x)
into a polynomial a(x), and get a smaller remainder. In the Divison Algorithm in Z, we write a = qb+ r,
where 0 ≤ r < b. In R[x], the sensible meaning for “r(x) < b(x)” is that the degree of r(x) is less than
the degree of b(x).

Theorem 3 (The Division Algorithm for R[x]). Let a(x), b(x) ∈ R[x] with b(x) 6= 0. Then there exist
unique polynomials q(x) and r(x) with deg r(x) < deg b(x) such that

a(x) = q(x)b(x) + r(x).

We won’t actually prove this result here. If we were going to prove it, we would us induction on the degree
of a(x). Instead, we will illustrate how the result works with an example.

Example 4. Find polynomials q(x) and r(x) with deg r(x) < 2 such that

x4 + 5x3 − 3x2 + x+ 2 = q(x)(x2 + 3x+ 5) + r(x)

Solution. We use “long division”, just as we used to do division of integers before we had calculators:

x2 + 2x − 14
x2 + 3x+ 5 ) x4 + 5x3 − 3x2 + x + 2

x4 + 3x3 + 5x2

2x3 − 8x2 + x
2x3 + 6x2 + 10x

−14x2 − 9x + 2
−14x2 − 42x − 70

33x + 72

From this we see that x4 + 5x3 − 3x2 + x+ 2 = (x2 + 2x− 14)(x2 + 3x+ 5) + (33x+ 72).

Tuesday: The Euclidean Algorithm in R[x]

In Z we use the Euclidean Algorithm to find greatest common divisors. What makes this possible is the
Division Algorithm.
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Since we also have the Division Algorithm in R[x], we can use a similar process to find greatest common
divisors in R[x].

Example 5. Find the greatest common divisor of a(x) = 2x3 + x2 − 2x− 1 and b(x) = x3 − x2 + 2x− 2.

Solution. We use the Euclidean Algorithm: first divide b(x) into a(x), then divide the remainder into b(x),
then divide this new remainder into the first one, and so on. The last non-zero remainder is the greatest
common divisor.

We have

2x3 + x2 − 2x− 1 = 2(x3 − x2 + 2x− 2) + (3x2 − 6x+ 3)

x3 − x2 + 2x− 2 = ( 1
3x+ 1

3 )(3x2 − 6x+ 3) + (3x− 3)

3x2 − 6x+ 3 = (x− 1)(3x− 3)

So the last non-zero remainder is d(x) = 3x− 3.

Theorem 6 (The Factor Theorem). Let p(x) ∈ R[x], and let a ∈ R. Then (x − a) | p(x) if and only
if p(a) = 0.

Proof. Suppose first that (x− a) | p(x). Then there is some q(x) such that p(x) = q(x)(x− a). But then
p(a) = q(a)(a− a) = 0.

Conversely, suppose that p(a) = 0. By the Division Algorithm in R[x], we can find polynomials q(x) and
r(x) with deg r(x) < 1 such that p(x) = q(x)(x − a) + r(x). Now, since deg r(x) < 1, r(x) is a constant.
Also, we have p(a) = q(a)(a− a) + r(a), in other words 0 = q(a) · 0 + r(a), so r(a) = 0. Hence r(x) = 0,
so we have p(x) = q(x)(x− a), so (x− a) | p(x).

Irreducible polynomials in R[x]

Definition. A polynomial p(x) ∈ R[x] is reducible in R[x] if it can be factorised as p(x) = a(x)b(x),
where a(x), b(x) ∈ R[x] with deg a(x) < deg p(x) and deg b(x) < deg p(x). It is irreducible in R if it is not
reducible in R[x].

When we say that a polynomial is irreducible, we must specify over what field of coefficients. For example,
the polynomial x2 + 1 is irreducible in R[x], but it can be factorised as (x− i)(x+ i) in C[x].

Exercise 7. Show that every linear polynomial ax+ b (with a 6= 0) is irreducible.

The irreducible polynomials in R[x] play the same rôle in R[x] that the primes play in Z: every polynomial
of degree greater than 0 can be written as a product of (one or more) irreducible polynomials. Moreover, as
with uniqueness of prime factorisations in Z, the factorisation of a polynomial as a product of irreducibles
is unique (up to the order of the elements, and multiplication by constants).

Thursday: Groups

Definition. Let ∗ be a binary operation on a set A with identity element e. Let a ∈ A. Then b is an
inverse of a if a ∗ b = b ∗ a = e.
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Example 8. The inverse of a real number x under the operation + is the number −x: we have x+(−x) =
(−x) + x = 0.

Definition. A group is a pair (G, ∗) where ∗ is a binary operation on G such that

• for any a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c;

• there is some e ∈ G such that, for every a ∈ G, a ∗ e = e ∗ a = a; and

• for any a ∈ G there is some b ∈ G with a ∗ b = b ∗ a = e.

We often abuse notation and refer to “the group G” instead of “the group (G, ∗)”.

Example 9. The integers form a group under addition, in other words (Z,+) is a group. The non-zero
real numbers for a group under multiplication, in other words (R \ {0}, ·) is a group.

Proposition 10. The inverse of a is unique. In other words, if a ∗ b = b ∗ a = e and a ∗ c = c ∗ a = e
then b = c.

Because of this uniqueness, we can denote the inverse of an element a by a−1.

Proposition 11. If (G, ∗) is a group and a, b, c ∈ G with a ∗ b = a ∗ c then b = c.

This is sometimes called the cancellation law.

Cayley tables

If ∗ is a binary operation on a finite set, we can write down a “multiplication table” for ∗. For example,
we can define an operation ∗ on the set G = {e, a, b, c} by the following table:

∗ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

We call this the Cayley table of the operation.

Exercise 12. Show that if ∗ is defined by the above table then (G, ∗) is a group.

Proposition 13. Each element of G occurs exactly once in each row and each column of the Cayley table
of a group operation.

Proposition 14. Let (G, ∗) be a group with identity element e.

1. If x ∈ G satisfies x ∗ x = x, then x = e.

2. If x, y ∈ G satisfy x∗y = y, then x = e. [Put another way, if x∗y = y for some y ∈ G then x∗y = y
for every y ∈ G.]

Exercise 15. Given that ⊕ is a group operation on the set G = {p, q, r, s}, complete the following Cayley
table:

⊕ p q r s
p r
q q
r
s
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Friday: The full symmetric group Sn

Related to the symmetry groups we discussed last week are the full symmetric groups. The group Sn is
defined to be the set of all bijections (one-to-one and onto functions) from {1, 2, . . . , n} to itself. Again,
the group operation is “composed with”, in other words f ∗ g = f ◦ g.

Exercise 18. How many elements does Sn have?

We can represent the elements of Sn in matrix form, as follows. For our example, we will fix
n = 4. We represent the element f by the 2 × 4 matrix which has

[
1 2 3 4

]
as its first row and[

f(1) f(2) f(3) f(4)
]

as its second row. For example the bijection which has f(1) = 3, f(2) = 4,

f(3) = 2, f(4) = 1 is represented by the matrix
[
1 2 3 4
3 4 2 1

]
. We can then work out the composition of

two elements. For example, we have[
1 2 3 4
3 4 2 1

]
∗

[
1 2 3 4
4 3 2 1

]
=

[
1 2 3 4
1 2 4 3

]
and [

1 2 3 4
4 3 2 1

]
∗

[
1 2 3 4
3 4 2 1

]
=

[
1 2 3 4
2 1 3 4

]
.

To answer the previous exercise, we can see that there are n ways to fill in the first entry in row 2, n− 1
ways to fill in the next, n − 2 for the next and so on, giving a total of n! ways to write such a matrix.
Thus |Sn| = n!.

Commutativity and abelian groups

For any real numbers x and y we have x+y = y+x. Thus the group operation in (R,+) is a commutative
operation. However, there is no need for every group operation to be commutative. For example, looking
back at the group D4 of symmetries of the square, we have that R90 ∗H = D′, whereas H ∗R90 = D.

Definition. A group (G, ∗) is abelian if ∗ is a commutative operation, and non-abelian otherwise.

So (R,+) is an abelian group whereas D4 is a non-abelian group.

Notice that even if G is a non-abelian group, there will still be some elements x and y satisfying x∗y = y∗x.
For example, this will be true if x = y, or if x = e or y = e (where e is the identity element).

Exercise 19. The elements of S3 are e =
[
1 2 3
1 2 3

]
, ϕ =

[
1 2 3
2 3 1

]
and ψ =

[
1 2 3
3 1 2

]
, α =

[
1 2 3
2 1 3

]
,

β =
[
1 2 3
3 2 1

]
, γ =

[
1 2 3
1 3 2

]
. Complete the Cayley table for S3.

∗ e ϕ ψ α β γ
e
ϕ
ψ
α
β
γ

Find elements x and y such that x ∗ y 6= y ∗ x.

Proposition 20. Let n be an integer with n ≥ 3. Then Sn is non-abelian.
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Cycles in Sn

Definition. A cycle in Sn is an element of Sn such that there exist distinct i1, i2, . . . , ik ∈ {1, 2, . . . , n}
with f(ij) = ij+1 for 1 ≤ j < k, f(ik) = i1 and f(j) = j for j /∈ {i1, i2, . . . , ik}. We denote this cycle by
(i1 i2 . . . ik).

For example, in S8 we have

(1 3 4 6) =
[
1 2 3 4 5 6 7 8
3 2 4 6 5 1 7 8

]
.

Exercise 21. Write the elements ϕ, ψ, α, β and γ of S3 in cycle form.
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