Monday: Linear Diophantine equations and cancellation laws

Linear Diophantine equations

A Diophantine equation is an algebraic equation (e.g. $ax^2 + bx + cxy = d$) in which the coefficients (a, b, c and d) are integers, and for which we seek integer solutions x and y. We will consider the special case of linear Diophantine equations, which are of the form

$$ax + by = c, (*)$$

where $a,b,c\in\mathbb{Z}$: we seek all integers x and y satisfying the equation (*). Of course, if x and y were allowed to be real numbers, then (*) would be the equation of a straight line: we ask when this straight line intersects the lattice of points $\mathbb{Z}^2 = \{(x,y): x,y\in\mathbb{Z}\}$. In general, a straight line could intersect \mathbb{Z}^2 in no points (e.g. $y = x + \sqrt{2}$), in one point (e.g. $y = \sqrt{2}x$, which intersects Z^2 only at the point (0,0)) or infinitely often (e.g. y = x). When we insist on integer coefficients only the first and the third possibilities occur.

We will ignore the case when a=0 or b=0: that case is easy to deal with. So for the rest of this section we will assume that $a,b\neq 0$. Put $d=\gcd(a,b)$. We know that $d\mid a$ and $d\mid b$, so for any $x,y\in\mathbb{Z}$ we have $d\mid ax+by$. Thus if (*) has a solution, we must have $d\mid c$: if $d\nmid c$ then no solution is possible.

Example 1. The equation 2x + 4y = 3 has no solutions: if x and y satisfied the equation, then the left hand side would be even but the right hand side would be odd.

So suppose that $d \mid c$, in other words c = dq for some q. Now, we know that there exist $x_d, y_d \in \mathbb{Z}$ with $d = ax_d + by_d$. Multiplying by q we get $dq = ax_dq + by_dq$, i.e. $c = a(x_dq) + b(y_dq)$. Thus (x_dq, y_dq) is a solution of (*).

Example 2. Find a solution to the equation 4x + 7y = 13.

What about the general solution? What happens if we try to prove the solution is unique?

Suppose that (x, y) and (x', y') are solutions. Then we have

$$ax + by = c = ax' + by',$$

so a(x-x')+b(y-y')=0, or a(x-x')=b(y'-y). Does this imply that x-x'=y'-y=0? No, it only implies that the number a(x-x') is a common multiple of a and b. If m is any common multiple of a and b, say m=ra=sb, then we can put x'=x-r, y'=y+s to get

$$a(x - x') + b(y - y') = a(x - (x - r)) + b(y - (y + s)) = ar - bs = m - m = 0,$$

as required. So the general solution is given by $x = x_d - m/a$, $y = y_d + m/b$, where m is a common multiple of a and b. Note that m is a common multiple of a and b if and only if $lcm(a,b) \mid m$. So the general solution is $x = x_d - tl/a$, $y = y_d + tl/b$, where l = lcm(a,b) and $t \in \mathbb{Z}$. Also we know that ld = ab, (see Chapter Zero 6.2.19) so l/a = b/d and l/b = a/d.

We can prove this by showing $lcm(a,b) \mid ab$ and hence that if ab = k lcm(a,b) then k is a common divisor of a and b. Likewise $gcd(a,b) \mid ab$ and so if ab = l gcd(a,b) then l is a common multiple of a and b. Now

by 6.2.8. $(a \mid b \land b \mid a \implies a = \pm b)$ and the fact that the only k, l which can satisfy both is $k = \gcd(a, b)$ and $l = \operatorname{lcm}(a, b)$.

Combining these facts we have the following theorem.

Theorem 3. Let $a, b, c \in \mathbb{Z}$ with $a, b \neq 0$. Put $d = \gcd(a, b)$, and fix $x_d, y_d \in \mathbb{Z}$ with $d = ax_d + by_d$. Then the equation ax + by = c has no integer solutions if $d \nmid c$, and has the general solution $x = x_d - tb/d$, $y = y_d + ta/d$ for $t \in \mathbb{Z}$ if $d \mid c$.

Example 4. Find the general solution of the Diophantine equation 4x + 7y = 13.

Example 5. Find the general solution of the Diophantine equation 6x - 15y = 27.

Cancellation laws

In \mathbb{Z} we have two cancellation laws: "if a+c=b+c then a=b" and "if ac=bc and $c\neq 0$ then a=b". The first is easy to prove from the axioms: if a+c=b+c then we have

$$(a+c)+(-c)=(b+c)+(-c)$$

$$a+(c+(-c))=b+(c+(-c))$$

$$a+0=b+0$$

$$a=b$$
(definition of $-c$)
(definition of 0)

However, we don't have multiplicative inverses as we do additive inverses. Of course we could jump outside \mathbb{Z} and into \mathbb{Q} , and multiply both sides by $\frac{1}{c}$, but that relies on other things, not on the axioms for the integers. To get the cancellation law from the axioms alone, we would have to do a little work. One way to prove it would be to prove by induction that the result holds for all $c \in \mathbb{N}$, and then extend the result to negative values of c. We will leave this as an exercise.

Tuesday: Class Test

Thursday: Congruence Modulo n

When we considered equivalence relations we had as an example the relation \sim on \mathbb{Z} defined by declaring that for $m, n \in \mathbb{Z}$ we have

$$m \sim n \iff 5 \mid m - n$$
.

We showed that \sim is an equivalence relation. This relation is called *congruence modulo 5*. In general, if $n \in \mathbb{N}$ we say that a and b are congruent modulo n if $n \mid a-b$: we write this relation $a \equiv b \pmod{n}$. This relation is an equivalence relation for every $n \in \mathbb{N}$. The set of equivalence classes is called the *integers modulo n*, written \mathbb{Z}_n . For $a \in \mathbb{Z}$, we call the equivalence class of a under congruence modulo n the *congruence class* of a, and denote it by \overline{a} .

Example 6. Fix n = 5. Find $\overline{0}$, $\overline{1}$, $\overline{10}$ and $\overline{16}$.

Lemma 7. Let $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$. Then $a \equiv b \pmod{n}$ iff a and b give the same remainder when divided by n.

From this we know that there are exactly n congruence classes in \mathbb{Z}_n , because there are n possible remainders $0, 1, \ldots, n-1$. So we have

$$\mathbb{Z}_n = \{\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}\}.$$

The set \mathbb{Z}_n inherits some properties from \mathbb{Z} . The most important is that we can define addition and multiplication on \mathbb{Z}_n in a natural way.

Definition. We define the operations $+_n$ and \cdot_n on \mathbb{Z}_n by declaring that, for $a, b \in \mathbb{Z}$,

$$\overline{a} +_n \overline{b} = \overline{a + b}$$
 and $\overline{a} \cdot_n \overline{b} = \overline{ab}$.

Of course we can write down any definition we like: we could define n to be the least positive solution of the equation x = x + 1... For this definition to make sense we have to make sure that the operations are well-defined. For example, with n = 5, consider finding $\overline{3} + \overline{5} + \overline{7}$ and finding $\overline{18} + \overline{5} + \overline{22}$. We have

$$\overline{3} +_5 \overline{7} = \overline{3+7} = \overline{10} = \overline{0}$$
 and $\overline{18} +_5 \overline{22} = \overline{18+22} = \overline{40} = \overline{0}$.

Thus we get the same answer both times. This is just as well, because $\overline{3} = \overline{18}$ and $\overline{7} = \overline{22}$, so we were doing the same sum in both cases.

For the definitions of $+_n$ and \cdot_n to make sense, we must ensure that if $\overline{a} = \overline{a'}$ and $\overline{b} = \overline{b'}$ then we get the same answer when we work out $\overline{a'} +_n \overline{b'}$, and similarly for \cdot_n . In other words, we must show that if $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ then $a + b \equiv a' + b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

Lemma 8. Let $a, b, a', b' \in \mathbb{Z}$, $n \in \mathbb{N}$. If $a \equiv a' \pmod{n}$ and $b \equiv b' \pmod{n}$ then $a + b \equiv a' + b' \pmod{n}$ and $ab \equiv a'b' \pmod{n}$.

To understand what we have done we should see an example where the operations would not be well defined.

Example 9. Partition \mathbb{Z} into the three sets $\Omega = \{A, B, C\}$

$$\begin{split} A &= \mathbb{N} \\ B &= \{0\} \\ C &= \{-n: n \in \mathbb{N}\,\}. \end{split}$$

We try to define addition +' and multiplication \cdot ' by taking a representative from the two classes we are adding, adding or multiply together the representatives, and finding the equivalence class of the answer. For example we have $A \cdot B = B$ because $n \cdot 0 = 0 \in B$ for every $n \in A$, and $A \cdot C = C$ because $m \cdot (-n) = -(mn) \in C$ for every $m \in A$, $-n \in C$. However, addition is **not** well-defined: when we try to find A + C we could get the answer A (for example by choosing the representatives $A \in A$ and $A \in B$ and $A \in B$ defined by choosing $A \in B$ and $A \in B$ are classes but on which representative of the classes we choose.

What can we say about arithmetic modulo n? We know that the operations $+_n$ and \cdot_n are commutative and associtive, and \cdot_n distributes over $+_n$. To show the last one, let $a, b, c \in \mathbb{Z}$. Then

$$\overline{a} \cdot_n (\overline{b} +_n \overline{c}) = \overline{a} \cdot_n \overline{b + c}$$

$$= \overline{a(b + c)}$$

$$= \overline{ab + ac}$$

$$= \overline{ab} +_n \overline{ac}$$

$$= \overline{a} \cdot_n \overline{b} +_n \overline{a} \cdot_n \overline{c}.$$

The commutative and associative laws follow similarly from the commutative laws and associative laws for \mathbb{Z} .

Friday: Division in \mathbb{Z}_n

The cancellation laws in \mathbb{Z}_n

Recall that in \mathbb{Z} we have two cancellation laws: a+c=b+c implies a=b, and ac=bc implies a=b for $c\neq 0$. The first of these laws carries over to \mathbb{Z}_n , because we can use the same argument as we did for \mathbb{Z} : the element \overline{a} has an additive inverse $\overline{-a}$. However, the cancellation law for \cdot_n does not always work. For example, fix n=12. Then we have $\overline{3} \cdot_{12} \overline{4} = \overline{12} = \overline{0}$, and $\overline{6} \cdot_{12} \overline{4} = \overline{0}$, so $\overline{3} \cdot_{12} \overline{4} = \overline{6} \cdot_{12} \overline{4}$, but $\overline{3} \neq \overline{6}$.

The problem is that we cannot divide both sides of the equation $\overline{3} \cdot_{12} \overline{4} = \overline{6} \cdot_{12} \overline{4}$ by $\overline{4}$. What would division mean? When might division work? What should $\frac{\overline{a}}{\overline{b}}$ mean when $\overline{a}, \overline{b} \in \mathbb{Z}_n$?

In \mathbb{Q} , the fraction $\frac{a}{b}$ is the unique solution x of the equation a = bx. So the problem becomes the question of whether the equation $\overline{a} = \overline{b} \cdot_n \overline{x}$ has a unique solution \overline{x} . In general, this equation could have no solutions, a unique solution, or more than one solution.

Example 10. Consider the equation $\overline{6} = \overline{4} \cdot_n \overline{x}$. Show that this equation has

- no solutions when n = 8
- two solutions when n = 10
- a unique solution when n = 15.

Now, if $\overline{a} = \overline{b} \cdot \overline{x}$ has a solution \overline{x} , then $a \equiv bx \pmod{n}$, so a = bx + ny for some $y \in \mathbb{Z}$. From our discussion of Diophantine equations, we know this happens if and only if $\gcd(b,n) \mid a$. In particular, if $\gcd(b,n) = 1$, then this equation has a solution for all a. Further, the solution will be unique:

Theorem 11. Let $a, b \in \mathbb{Z}$, $x \in \mathbb{N}$. If b and n are relatively prime then the equation $\overline{a} = \overline{b} \cdot_n \overline{x}$ has a unique solution $\overline{x} \in \mathbb{Z}_n$.

Corollary 12. If p is a prime number then for every $b \not\equiv 0 \pmod{p}$ the equation $\overline{a} = \overline{b} \cdot_p \overline{x}$ has a unique solution in \mathbb{Z}_p .

Thus, division works in \mathbb{Z}_p just the same as it does in \mathbb{Q} and \mathbb{R} . We will return to this example, which is an example of a *field*, when we discuss the axioms for the real numbers in Chapter 8.