Lecture outlines for week 5

Monday: Functions as relations, one to one and onto functions

What is a function? [5.1]

Informally, a function from A to B is a rule which assigns to each element a of A a unique element f(a) of B. Officially, we have

Definition. A function f from A to B is a subset of $A \times B$ such that

- for each $a \in A$ there is $a \in B$ with $(a, b) \in f$.
- if $(a, b) \in f$ and $(a, c) \in f$ then b = c.

We write $f : A \to B$ to show that f is a function from A to B. If $a \in A$, we write f(a) for the unique $b \in B$ such that $(a,b) \in f$.

Thus if f is a function, we have $f(a) = b \iff (a, b) \in f$. We will use this equivalence later.

Definition. If $f : A \to B$, the A is the domain of f and B is the codomain of f. We write Dom(f) for A and Codom(f) for B. We also define the range of f, Ran(f), by

 $\mathcal{R}an(f) = \{ b \in B : (\exists a \in A)(f(a) = b) \}.$

Note that $\Re(f) \subseteq \operatorname{Codom}(f)$, but there are examples where the two sets are not the same.

Definition (Equality of functions). Two functions $f : A \to B$ and $g : A' \to B'$ are equal iff they are the same set of ordered pairs, in other words iff A = A' and f(a) = g(a) for all $a \in A$. [Notice that the textbook also requires that B = B': most authors would consider that f and g are equal even if the codomains differ, as long as the domain and values are the same.]

One-to-one and onto [5.1]

Definition. A function $f : A \to B$ is one-to-one if for each $b \in B$ there is at most one $a \in A$ with f(a) = b. It is onto if for each $b \in B$ there is at least one $a \in A$ with f(a) = b. It is a one-to-one correspondence or bijection if it is both one-to-one and onto.

Notice that "f is one-to-one" is asserting uniqueness, while "f is onto" is asserting existence. This gives us the idea of how to prove that functions are one-to-one and how to prove they are onto.

Example 1. Show that the function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x + 1 is one-to-one and onto.

Example 2. Show that the function $f : \mathbb{Z} \to \mathbb{Z}$ given by f(n) = 2n + 1 is one-to-one but not onto.

For functions from \mathbb{R} to \mathbb{R} , we can use the "horizontal line test" to see if a function is one-to-one and/or onto. The horizontal line y = b crosses the graph of y = f(x) at precisely the points where f(x) = b. So f is one-to-one if no horizontal line crosses the graph more than once, and onto if every horizontal line crosses the graph at least once. **Example 3.** Sketch graphs of the following functions $f : \mathbb{R} \to \mathbb{R}$ and determine whether each is one-to-one and/or onto.

1. $f(x) = x^3 + x$. 2. $f(x) = x^3 - x$. 3. $f(x) = e^x$.

4.
$$f(x) = x^2$$
.

Notice that in the definition of "onto", we need to know what the codomain is. So the function $f = \{(x, e^x) : x \in \mathbb{R}\}$ is not onto when thought of as a function from \mathbb{R} to \mathbb{R} , but it is onto when thought of as a function from \mathbb{R} to $(0, \infty)$.

Proposition 4. Let $f : A \to B$ be a function. Then f is an onto function from A to $\operatorname{Ran}(f)$. If f is one-to-one, then f is a bijection from A to $\operatorname{Ran}(f)$.

Tuesday: Composition of functions, Inverses

Composition of functions [5.2]

Definition. Let $f : A \to B$ and $g : B \to C$. We define a new function $g \circ f : A \to C$ by declaring that $(g \circ f)(a) = g(f(a))$. We call $g \circ f$ "g composed with f".

Example 5. Let $f, g: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 2$ and g(x) = 3x. Find $g \circ f$ and $f \circ g$.

The above example shows that $f \circ g$ and $g \circ f$ need not be equal. Of course, if A and C are not the same, they will not even be defined: if $g(b) \notin A$ then trying to figure out what f(g(b)) is gives a type error. [For example, "my mother's telephone number" makes sense but "my telephone number's mother" does not.

Composition of functions interacts with the notions of one-to-one and onto: it does preserve these properties, and in some cases if the composition has the property then so must the original functions.

Theorem 6. Let $f : A \to B$ and $g : B \to C$ be functions.

- 1. If f and g are both one-to-one then $g \circ f$ is one-to-one.
- 2. If f and g are both onto then $g \circ f$ is onto.
- 3. If $g \circ f$ is one-to-one then f is one-to-one.
- 4. If $g \circ f$ is onto then g is onto.

However there are examples of f and g with $g \circ f$ both one-to-one and onto but g not one-to-one and f not onto.

Although \circ is not commutative, it is associative.

Theorem 7. Let $f : A \to B$, $g : B \to C$ and $h : C \to D$ are functions then $(h \circ (g \circ f)) = ((h \circ g) \circ f)$.

Proof. See pp 110 and 111 of the textbook, Problem 5.2.6.

Definition. Let A be a set. The identity function on A, 1_A , is the function $1_A : A \to A$ given by f(a) = a for all $a \in A$. In other words, $1_A = \{(a, a) : a \in A\}$.

Proposition 8. Let $f : A \to B$ be a function. Then $1_B \circ f = f = f \circ 1_A$.

Thursday: Inverses, images and preimages

Inverses [5.2]

Definition. Let $f : A \to B$ be a function. An inverse of f is a function $g : B \to A$ such that $f \circ g = 1_B$ and $g \circ f = 1_A$.

Example 9. Let $f, g: \mathbb{R} \to \mathbb{R}$ be given by f(x) = 2x + 1 and $g(x) = \frac{1}{2}x - \frac{1}{2}$. Then g is an inverse of f.

Example 10. Let $f : R \to [0,\infty)$ and $g : [0\infty) \to \mathbb{R}$ be given by $f(x) = x^2$ and $g(x) = \sqrt{x}$. Then g is not an inverse of f. Although we have $f(g(x)) = (\sqrt{x})^2 = x$, so $f \circ g = 1_{[0,\infty)}$, when we consider $g(f(x)) = \sqrt{x^2}$, we always get the positive square root, so for example $g(f(-2)) = \sqrt{(-2)^2} = \sqrt{4} = 2$.

Lemma 11. Let $f : A \to B$. Suppose g is an inverse of f. Then $g = \{(f(a), a) : a \in A\}$.

Proof. We must prove two inclusions: $g \subseteq \{(f(a), a) : a \in A\}$ and $\{(f(a), a) : a \in A\} \subseteq g$.

Let $p \in g$. Then p = (b, g(b)) for some $b \in B$. Now f(g(b)) = b, so we have p = (f(g(b)), g(b)), i.e. p = (f(a), a) where a = g(b). So $p \in \{(f(a), a) : a \in A\}$ as required.

Conversely, let $a \in A$: we will show that $(f(a), a) \in g$. Now, we know that g(f(a)) = a. Since $g(y) = z \iff (y, z) \in g$, this means that $(f(a), a) \in g$, as required.

Lemma 12. Let $f : A \to B$ be a function. If f has an inverse, it is unique.

Proof. Use Proposition 8 and Theorem 7.

If f has an inverse, we write it as f^{-1} .

Theorem 13. Let $f : A \to B$ be a function. Then f has an inverse if and only if f is a bijection.

Proof. Suppose first that f has an inverse. We must show that f is one-to-one and onto.

One-to-one: Let $x, y \in A$ with f(x) = f(y). Then $f^{-1}(f(x)) = f^{-1}(f(y))$, i.e. x = y, as required.

Onto: Let $b \in B$. Then $f(f^{-1}(b)) = b$, i.e. there is at least one $a \in A$ (namely $a = f^{-1}(b)$) such that f(a) = b.

Conversely, suppose that f is a bijection. We must find a candidate function g such that g is an inverse of f. From the earlier lemma, there is only one possible choice: we must have $g = \{(f(a), a) : a \in A\}$. So we must check that this is indeed an inverse of f: we must show it is a function, that $f \circ g = 1_B$ and that $g \circ f = 1_A$.

- **Function:** Let $b \in B$. On the one hand, since f is onto, there is at least one $a \in A$ with f(a) = b, so there is at least one $a \in A$ with (f(a), a) = (b, a), so there is at least one $a \in A$ with $(b, a) \in g$. On the other hand, since f is one-to-one, there is at most one $a \in A$ with f(a) = b, so there is at most one $a \in A$ with $(b, a) \in g$. So g is indeed a function.
- $f \circ g = 1_B$: Let $b \in B$. Put a = g(b). So $(b, a) \in g$, so (b, a) = (f(c), c) for some $c \in A$. We must have c = a, so b = f(a), i.e. b = f(g(b)), as required.
- $g \circ f = 1_A$: Let $a \in A$. Then $(f(a), a) \in g$, so g(f(a)) = a, as required.

Images and preimages [5.3]

Definition. Let $f : A \to B$ be a function. For $S \subseteq B$ we define the inverse image or preimage of S under f to be

$$f^{-1}(S) = \{ a \in A : f(a) \in S \}.$$

Notice that $f^{-1}(S)$ is a **subset** of A, not an element of A. It is defined whether or not f^{-1} exists as a function. Note that there is a slight ambiguity here: if f happens to be a bijection then $f^{-1}(b)$ is an element of A for $b \in B$ and $f^{-1}(S)$ is a subset of A for $S \subseteq B$. Since the elements of B are not (usually) subsets of B, this ambiguity should never cause a problem.

Example 14. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Find the following sets:

1. $f^{-1}(\{4\})$. 2. $f^{-1}([-2,9])$. 3. $f^{-1}((1,4])$. 4. $f^{-1}(\{-9\})$.

To prove facts about preimages, we use the equivalence that

 $x \in f^{-1}(S) \iff f(x) \in S.$

Example 15. Let $f : A \to B$ be a function, $S, T \subseteq B$. Then

1.
$$f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T).$$

2. $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T).$
3. $f^{-1}(S_B^{\mathbb{C}}) = f^{-1}(S)_A^{\mathbb{C}}.$

In the same way as the preimage, we define the image of a subset of A:

Definition. Let $f : A \to B$ be a function and $S \subseteq A$. We define the image of S under f to be

$$f(S) = \{ f(a) : a \in S \}.$$

Example 16. Let $f : A \to B$ be a function, $S, T \subseteq B$. Then

1.
$$f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T).$$

2. $f^{-1}(S \cap T) \subseteq f^{-1}(S) \cap f^{-1}(T).$

Notice that in the second of these, we only get \subseteq rather than =: we can find examples with $f(S \cap T) \subset f(S) \cap f(T)$.

Friday: Orders and functions

Definition. Let (A, \preceq_A) and (B, \preceq_B) be sets. A function $f : A \to B$ is order-preserving if for all $x, y \in A$,

$$x \preceq_A y \implies f(x) \preceq_B f(y).$$

It is strictly order preserving if for all $x, y \in A$,

$$x \preceq_A y \iff f(x) \preceq_B f(y).$$

For example, a constant function (in other words a function f such that there is some $b \in B$ with f(x) = b for all $x \in A$) is order preserving, but is not strictly order preserving unless A is empty or has only one element.

Proposition 17. If (A, \preceq_A) and (B, \preceq_B) are posets and $f : A \to B$ is strictly order preserving then f is one-to-one.

Definition. Let (A, \leq_A) and (B, \leq_B) be posets. An order-isomorphism from A to B is a bijection $f : A \rightarrow B$ such that f and f^{-1} are both order-preserving. If there exists such an isomorphism, we say that A and B are order-isomorphic.

Example 18. Let $A = \{n \in \mathbb{N} : n \mid 30\}$ and $B = \mathcal{P}(\{2,3,5\})$. Define $f : A \to B$ by $f(n) = \{m \in \{2,3,5\} \mid m \mid n\}$. Then f is an order-isomorphism from (A, |) to (B, \subseteq) .

Example 19. Show that (\mathbb{Z}, \leq) is order-isomorphic to (E, \leq) , where E is the set of even integers.

Theorem 20. Let (A, \leq_A) and (B, \leq_B) be posets and $f : A \to B$ a bijection. Then f is an orderisomorphism iff f is strictly order preserving.

Theorem 21. Let A and B be posets and $f : A \to B$ an order-isomorphism. Then $x \in A$ is maximal in A iff f(x) is maximal in B.

Example 22. Let $A = \{1 - \frac{1}{n} : n \in \mathbb{N}\}$, and $B = A \cup \{1\}$, with the usual order they get as subsets of \mathbb{R} . Then \mathbb{N} is order isomorphic to A but \mathbb{N} is not order-isomorphic to B.