DEPARTMENT OF MATHEMATICS

MATHS 255 Lecture outlines for week 2

Monday: Existence proofs and counterexamples

Existence proofs [1.9]
To prove something of the form “there is an z such that A(z)”, we do two steps:

e produce a suitable value of x (like pulling a rabbit from a hat)
e show that that particular value of x does what is claimed.

Example 1. Show that there is some x € R such that x> + 12z — 85 = 0.

Proof. Let = 5. Then 22 + 122 — 85 =52 4+ 12-5 — 85 = 25 4 60 — 85 = 0, as required. O

Uniqueness proofs [1.10]

To prove that there is at most one z with the property A(x), we suppose that we have two objects x and
y with A(z) and A(y), and deduce that © = y.

Lemma 2. If 2,y € R with 2% + 2y +y* =0 then x =y = 0.

Proof. Exercise. Hint: 2? + zy + 32 = 2(z + y)? + 1 (z — y)*. =

Example 3. Cube roots are unique, in other words if r is a real number then there is at most one x € R
with 23 = 7.

Proof. Suppose that z,y € R with 23 = r and > = 7. Then 2®> — 9> = r —r = 0, and 2° — ¢3 =
(x —y)(z® + 2y +y?). Now, if a,b € R with ab=0thena=00r b=0,s0 . —y =0 or > + 2y + 3> = 0.
Now if £ —y = 0 then = vy, and if 2? + zy + y2 = 0 then £ = y = 0, by the Lemma. So we have
uniqueness. O

Examples and counterexamples [1.11]

Remember when we want to prove an implication A(z) = B(z), we are really proving the statement
(Vx)(A(zx) = B(z)). To show that the implication is not a theorem, we are proving ~(Vx)(A(x) =
B(z)), i.e. (3z)(A(z) A ~B(x)). So what we have to do is give an existence proof. Again, we find an
object x and then demonstrate that it has the properties A(x) and ~ B(x). Such an object is called a
counterezample to the implication A(x) = B(x).

Example: Exercise 1.11

e If a real number is greater than 5, it is less than 10.
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e If £ +y is odd and y + z is odd then = + z is odd.

Tuesday: Sets, subsets, set equality

Sets and Set notation [2.1]

A set is a collection of objects. We write = € A if the object x is in the set, otherwise z ¢ A. We can
specify a set in three ways:

e enumerate the elements, e.g. X ={1,2,3}, Y ={1,3,5,...,17}, N={1,2,3,... }.

e use set builder notation, e.g. X ={z eN:1<2 <3}, Y={neN:nisoddand1 <n <17},
N = {z : z is a natural number }.

e Use an indexing set, e.g. Y ={2n—1:n € {1,2,...,9} }.

Some sets are so important they have their own names, e.g. N, Z, R, Q and intervals such as [a, ], [a,b),
(a,b) and (—o0,b). One other set with a name: the empty set 0.

Subsets [2.2]

A subset of a set A is a set S with the property that every element of S is also an element of A. We write
S C A.

Examples: NC Z, Q C R. For any set X, ) C X and X C X.
Important: do not mix up x € A and z C A.

Notice that S C A is an implication: “if x € S then x € A”.
Exercise 2.2.4.

A proper subset of a set A is a set S with S C A and S # A. We will sometimes write S C A in this case.
Warning: some books use S C A to mean S is a subset of A, not necessarily a proper subset of S.

To say that two sets A and B are equal is to say that they have exactly the same elements, i.e. that
A C B and B C A. So to prove that two sets are equal, we have to prove two implications.

Example: to show that {x € R: 2?4+ 122 — 85 =0} = {5, —17} we have to prove two implications:

o if t € R with 22+ 122 —85=0then z =5 or x = —17; and
o if t =5 or £ = —17 then € R with 22 + 122 — 85 = 0.
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Thursday: Set operations

Complement, intersection and union [2.3]

Given a set U (which we call a universal set) and a set S C U, we define the complement of S in U to be
SS. If U is fixed and understood, we may simply write S¢ and refer to the complement of S.

Example (exercise 2.3.2 and 2.3.3). Put S = [-5,2], U = [-5,5]. Find S and S§.

Definition: if A and B are sets then the intersection of A and Bis ANB ={x:2 € AAx € B} and the
ungon of Aand Bis{z:z € AVx € B}

Example (exercise 2.3.5): let A ={a,b,c,d,e, f,g}, B={a,e,i,0,u}. Find AN B and AU B.

We may use Venn diagrams to illustrate these.

Set identities [2.4]

Recall that to show that two sets are equal we have to prove two implications.
Example 4. Let A and B be sets. Show that AN (AU B) = A.

Proof. Let t € AN(AUB). Then ... so z € A.

Conversely, let y € A. Then ... soy € AN(AUB). O

Example (Theorem 2.4.2): for any sets A, B and C we have AU(BNC)=AUB)N(AUCQC).

Set operations with indexing sets

Suppose we have a set A, and for each a@ € A we have a set U,. Then we may form the union of all these
sets and (provided A # (}) the intersection of all these sets. We define the union to be

U Uy ={x:2 €U, for at least one o € A }
aEN

and the intersection to be
m Uy ={x:2 €U, for every « € A }.
acA

Example: for each n € N let I,, = [0, +]. Find (), oy In and U, ey In-

Example: find (), o, [n,n + 1] and |J,,cy[n, 7 + 1].

Friday: The power set

Exercise: list all the subsets of {1, 2, 3}.
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The collection of all subsets of a set A is called the power set of A, written P(A). So we have S € P(A)
if and only if S C A.

Example 5 (Theorem 2.5.4). Show that if A and B are sets then A C B if and only if P(A) C P(B).
Example 6 (Theorem 2.5.5). Let A and B be sets. Show that P(AN B) = P(A) NP(B).

Example 7. Let A and B be sets. Show that P(A) UP(B) C P(AU B). Find an example of sets A and
B such that P(A)UP(B) C P(AU B)
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