DEPARTMENT OF MATHEMATICS
MATHS 255 Lecture outlines for week 11

Monday: Continuous functions

Definition. Let A C R, let f: A — R be a function, and let a € A. Then f is continuous at a if
for every e > 0 there is a § > 0 such that for all x € A, if |x —a| < 0 then |f(x) — f(a)] <e. We
say that f is continuous if it is continuous at a for all a € A.

Example 1. Let f : R — R be given by f(x) = 22, and let a € R. Then f is continuous at a.

Proof. Let € > 0. Put 6:min{1,m}. Let x € R with |z —a| <. Put h=2—a,s0ox =a+ .
Then

1) = f@)] = |f(a+h) - f(@)
~ |(a+h)2—
= |a® 4 2ah + h? — @?|
= [2ah + h?|
= |2a + hl|h|
< ([2a[ + |n[)|n|
(2]a] + 1)|h| (since |h| < 1)

<
< (2la] +1)8

)
as required. O

Example 2. Define f : R — R by f(z) = sm( ) forx #0, f(0)=0. Then f is not continuous at
0.

Proof. Suppose for a contradiction that f is continuous at 0. Then, since % > O there is some

§ > 0 such that if |z — 0] < & then |f(z) — f(0)| < 3. Choose n € N with n > 1 (——1) Then
2n+1> % so (2n+1) > §,SOW < 4. Putx—m Then |z| <, s0 |f(x )] < 1. However,

f(z) =sin ((2n + ) ), so f(z) = =£1, s0 |f(z)] =1 £ 1. This contradiction shows that there is no
such §, and hence f is not continuous at 0. 0

The intermediate value theorem

Theorem 3 (The intermediate value theorem). Let f : [a,b] — R be continuous, and let k € R

b —
with f(a) < k < f(b). Then there is some ¢ € (a,b) with f(c) = k.
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Proof. Put S = {z € [a,b] : f(x) <k}. Thena € SsoS #0, and S is bounded above by b, so S
has a supremum. Put ¢ =sup S.

Claim: f(c) £ k.

For: Suppose for a contradiction that f(c¢) < k. Put ¢ = k — f(c), and choose § > 0 so that
if x € [a,b] with |x —¢| < § then |f(x) — f(c)| < e. Note that if |f(z) — f(c)| < e then
flx) — fle) <e=k— f(e), so f(x) < f(c). Thus [b—c| £ d, 80 c+6 <b. Put z =c+3.
Then z > c=sup S, so x ¢ S. However, f(z) < f(¢c) +e =k, and x € [a,b], so z € S. This
contradiction showws that we cannot have f(c) < k.

Claim: f(c) # k.

For: Suppose for a contradiction that f(c) > k. Put ¢ = f(¢) — k. Choose § > 0 such that if
x € [a,b] with |x — ¢| < ¢ then |f(z) — f(c)| < e. Since § > 0 and ¢ = sup S, there is some
x €S with ¢ — 0 < x < ¢. But then |z —¢| < 9, so |f(z) — f(c)| < e, s0 f(z) — f(c) > —e =
—(f(¢) — k) =k — f(c¢). Thus f(x) > k. But this contradicts the assumption that = € S so
f(z) < k. Hence there is no such = and therefore we cannot have f(c) > k.

Thus we cannot have f(c) < k or f(c) > k, so f(c) = k, as required. Finally, note that since a € S
and b is an upper bound for S, a < supS < b, i.e. a < ¢ <b. Since f(a) # f(c) # f(b) we have
a#c#bsoa<c<b,ie c€(a,b) as required. O

Tuesday: Continuity in terms of limits, open and closed sets and
sequences

Limits of functions

Definition. Let a € R and let € > 0. We define the e-ball centred at a, B:(a), by
B(a)={xze€eR:|z—a|<e},
and the deleted e-ball centred at a, B.(a), by BL(a) = B:(a) \ {a}.

Definition. Let A C R and let a € R. Then a is a limit point of A if, for everye > 0, B-(a)NA # (),
and a is an accumulation point of A if for alle > 0, Bl(a) N A # 0.

Definition. Let A C R, let f: A — R be a function, let a be an accumulation point of A and let
L € R. We say that lim,_,, f(z) = L if for all € > 0 there is a 6 > 0 such that for all x € A, if
0<|z—a|l<d then |f(z) — L| <e.

Notice the big difference between the definition of a limit and the definition of continuity: we insist
that 0 < |z — a| < 0, in other words we do not test whether |f(z) — L| < € holds at = a, only at
values of x close to but not exactly equal to a. Thus, for example lim, .o 2% makes sense without

. x
having to explain that we never intend to evaluate %.
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Example 4. Define the function f : R — R by f(z) = x if x ¢ Z, f(x) =0 if v € Z. Then
limg o f(z) = 2.

The two definitions, continuity and limits, fit together by the following result.

Theorem 5. Let ACR and let f: A — R be a function. Then f is continuous if and only if, for
every a € A, if a is an accumulation point of A then lim,_, 4 f(z) = f(a).

Proof. Exercise. O

Open and closed sets

Definition. A subset U of R is open if for every x € U there is some € > 0 such that Bs(z) C U.
A subset C' of R is closed if Cﬂg is open.

Proposition 6. Let C C R. Then C is closed if and only if, for every sequence (s,) in C, if
(Sn) — a asn — oo then a € C.

Proof. Suppose first that C' is closed. We must show that if (s,) is a convergent sequence in C'
then the limit of the sequence is also in C'. So suppose that s,, — a as n — oo. Suppose, for a
contradiction that a ¢ C. Then a € C®, and C° is open, so there is an £ > 0 such that B.(a) C C°.
Since s, — a, there is an N € N such that for n > N, |s, —a] < . But then sy;+1 € B:(a), so
sy+1 € OF contradicting the assumption that (s,) is a sequence in C. So we cannot have a ¢ C,
soae€C.

Conversely, suppose that for every sequence in C, if s, — a then a € C. Put U = C®. We must
show that U is open. So let a € U. Suppose, for a contradiction, that there is no ¢ > 0 with
B(a) CU. In particular, for each n € N we have B1 (a) € U, so there is some s, € Bi(a)\U. But

then s, ¢ C¢, so s, € C.

Claim: s, — a as n — oo.

For: Let ¢ > 0. Choose N € N with N > % Then % < e. Let n € N with n > N. Then % < %
Since s, € B1(a), [sp —a| < 2 < % <&, s0 |s, —a| < ¢ as required.

Thus (sy,) is a sequence in C' which converges to a, but a ¢ C, contradicting our assumption about

C. O]

Lemma 7. Let f : R — R be a continuous function. For every open set U, f~1(U) is open.

Proof. Let U be open, and let a € f~'(U). Then f(a) € U, so there is some ¢ > 0 such that
B.(f(a)) C U. By continuity, there is some § > 0 such that if |z — a| < § then |f(z) — f(a)| < e.
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Claim: Bj(a) C f~1(U).

For: Let x € Bs(a). Then |x —a| < 0, so |f(x) — f(a)| <&, so f(x) € B-(f(a)) CU, so f(x) € U,
so x € f~H(U), as required.

O]

The converse is also true: to prove it, we first have to use the triangle inequality to prove that every
e-ball B.(a) is open.

Lemma 8. Let f : R — R be a function. Then f is continuous if and only if, for every sequence
(sn) in R, if s, = a as n — oo then f(s,) — f(a) as n — oo.

Proof. Suppose first that f is continuous. Let (s,) be a sequence in R. Suppose s, — a as n — oc.
Let € > 0. By continuity, there is some 6 > 0 such that if |x — a| < ¢ then |f(x) — f(a)| < e. Since
Sn — a, there is some N such that if n > N then |s, —a| < §. Let n > N. Then |s, —a|] < 4, so
|f(sn) — f(a)| < e, as required.

We leave the converse as an exercise. O

Thursday: Differentiability

In today’s lecture we will learn exactly what it means for a function to be differentiable. Before
doing that, we will find a little more about limits.

Limits of products and quotients

Theorem 9. Let A C R, let f,g : A — R be functions, and let ¢ be an accumulation point

of A. If limy_. f(x) and limgz_.g(x) both exist then limy_.. f(x)g(x) exists and is equal to

limg . f(z) lim, .. g(x).

Proof. Let F = lim,_,. f(z) and G = lim,_,.g(x). Put n = m Choose 6199 > 0 so that if
2

0 < |z —c| < & then |f(z) — F| <nand if 2 € A with 0 < |z — ¢| < 05 then [g(z) — G| < min{n, 1}.
Note that if z € A with 0 < |z —¢| < &, then [g(z) — G| < 3 so |g(z) < |G|+ 3. Put § = min{dy, &>}
Let z € A with 1 < |z —¢| < §. Then

|f(z)g(z) — FG| = |f(2)g(z) — Fg(z) + Fg(z) — FG]|
<|f(x)g(z) — Fg(x)|+ |Fg(x) — FG| (triangle inequality)
= [f(z) = Fllg(z)| + |Fllg(z) — G|
< (Gl + 3) + | Fln

=&
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Thus lim, .. f(x)g(x) exists and equals F'G. O

Note that we might be a little lazy and write this as “lim, .. f(2)g(z) = limz—. f(x) limz_. g(z)”.
However, we must remember that limits need not exist, and the existence of the limit is part of
the assertion. Also the converse does not hold: it is quite possible for lim,_,. f(z)g(x) but neither
lim,_,. f(z) nor lim,_,. g(x) to exist.

Theorem 10. Let A CR, let f: A — R be a function, and let ¢ be an accumulation point of A. If
lim,_.. f(z) exists and is non-zero then lim,_,. ﬁ exists and is equal to m

Proof. Exercise. Note that we need to choose ¢ small enough to ensure that f(x) is non-zero within

a distance of § from ¢: in fact we will want to ensure that ﬁ does not get too large—say, does

not get larger than 2F where F' = lim,_.. f(z)—so we will choose 0 small enough to ensure that
|f(z)— F| < £, which ensures that |f(z)| > |F — £|. See the proof that if b, — B # 0 then i -+
in the notes for week 11 for more ideas. O

Exercise 11. Let A C R, let f,g : A — R be functions, and let ¢ be an accumulation point
of A. If lim,_.. f(x) and lim,_.g(z) both exist then lim, .. f(x) + g(x) emists and is equal to
lim, . f(z) + lim, . g(x).

Differentiability

Definition. Let A C R. Ifc € A, we say that ¢ is an interior point of A if there is some € > 0
such that B:(c) C A. We denote the set of interior points of A by int(A).

Thus A is open if and only if every point of A is an interior point of A, i.e. if A = int(A).

Definition. Let A C R, let f : A — R be a function and let ¢ € int(A). We say that f is
differentiable at ¢ if lim,_.. W exists, or equivalently if limy_,q w exists. If the limit
exists, we denote it by f'(c), and call this number the derivative of f at ¢. For S C int(A) we say
that f is differentiable on S if f is differentiable at all c € S. When A is open we say that f is
differentiable if it is differentiable on A.

Example 12. Define f : R — R by f(x) = x2. Then f is differentiable and, for all ¢ € R,
f'(c) = 2¢c.

Proof. For all h # 0 we have
flerh) = f(e)  (e+h)?—c

h h
B 2 +2ch+h?—c?
N h
_ 2ch+h
h
=2c+h
Now limj_.g2c 4+ h = 2¢, so f'(c) exists and equals 2¢, as required. O
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Theorem 13. Let ACR, let f: A— R be a function and let ¢ € int(A). If f is differentiable at c
then f is continuous at c.

Proof. Suppose f is differentiable at ¢. Then limxﬂcw exists and equals f'(c). We also
have lim,_..(z — ¢) exists and equals 0. So by Theorem 9, lim,_,. %(m — ¢) exists and equals
f(c)-0=0. So limy_.(f(z) — f(c) =0, so limy_.. f(z) = f(c), so f is continuous at c. O

Friday: Rolle’s Theorem and the Mean Value Theorem

Lemma 14. Let a,b € R with a < b, and let f : [a,b] — R be continuous. Then f is bounded and
attains its bounds. In other words, there exist ¢,d € [a,b] with f(c) = max{ f(z) : € [a,b] } and

f(d) = min{ f(z) : x € [a,b] }.

Proof. First we will show that f is bounded. Suppose, for a contradiction, that f is unbounded
above. For each n € N we can find some z,, € [a,b] with f(z,) > n. Now the sequence (z,) is
bounded, so it has a convergent subsequence, (x;,) say. Let x be the limit of this subsequence. Since
(z,) is a sequence in [a,b], which is closed, we have = € [a,b]. But then f(x;,) converges to f(x),
which is impossible because (f(x;,)) is an unbounded sequence.

Similarly, f is bounded below.

Put s = sup{ f(z) : @ € [a,b]}. For every n, there is some y, € [a,b] with s — 2 < f(y,) < s.

Then (y,) is a bounded sequence in [a, b], so it has a subsequence (y;,) which converges to some
¢ € [a,b]. By continuity, (f(y;n)) converges to f(c). But, by construction, (f(y;,) converges to s.

So f(¢) =s=sup{ f(z):z € [a,b]}. So f(c) = max{ f(x): x € [a,b] }.
Similarly, f attains its infimum. O

Definition. Let A CR, let f: A — R be a function and let a € A. Then a is a local maximum of
f if there is some € > 0 such that for all x € A with |x — a| < € we have f(x) < f(a). Similarly,
a is a local minimum of f if there is some € > 0 such that for all x € A with |x — a|] < £ we have

f(@) = f(a).

Theorem 15. Let AC R, let f: A — R be a function and let a € int A. If f'(a) exists and a is a
local mazimum or local minimum of f then f'(a) = 0.

Proof. Exercise. O

Note that we need both f’(a) exists and a € int(A) as hypotheses here: consider the examples
f :1]0,1] — R given by f(x) = z, which has 1 as a local maximum, and g : R — R given by
g(x) = |x| which has 0 as a local minimum.

Theorem 16 (Rolle’s Theorem). Let a,b € R with a < b. Let f : [a,b] — R be continuous, and
differentiable on (a,b). Suppose f(a) = f(b). Then there is some c € (a,b) with f'(c) = 0.
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Proof. Put k = f(a) = f(b). We know that f is continuous on [a,b] so it attains its maximum at
some ¢ € [a,b]. Suppose first that ¢ # a and ¢ # b. Then ¢ € (a,b), so ¢ is a local maximum of f,
and f’(c) exists, so by the previous result we must have f’(¢) = 0.

Similarly, we know that f attains its minimum at some d € [a, b], and if d # a,b then d € (a,b) and

#(d) = 0.

The only remaining possibility is that ¢, d € {a,b}. But then we must have f(z) = k for all x € [a, b],
so f'(z) =0 for all z € (a,b). O

Theorem 17 (Mean Value Theorem). Let a,b € R with a < b and let f : [a,b] — R be

continuous, and differentiable on (a,b). Then there is some ¢ € (a,b) with f'(c) = f(bl);i(“).

Proof. Put k = f(bl)):ﬁ(a) and define g : [a,b] — R by g(z) = f(x) — kx. Then g is continuous on
[a,b] and differentiable on (a,b), with ¢'(z) = f/'(z) — k. Also

9(b) = g(a) = f(b) = kb — f(a) - ka

so g(a) = g(b). Hence by Rolle’s Theorem there is some ¢ € (a,b) with ¢’(¢) = 0. But then
f'(¢) —k=0,so f'(c) =k, as required. O

MATHS 255 Lecture outlines for week 11 Page 7 of 7



