
Department of Mathematics

MATHS 255 Lecture outlines for week 11

Monday: Continuous functions

Definition. Let A ⊆ R, let f : A → R be a function, and let a ∈ A. Then f is continuous at a if
for every ε > 0 there is a δ > 0 such that for all x ∈ A, if |x − a| < δ then |f(x) − f(a)| < ε. We
say that f is continuous if it is continuous at a for all a ∈ A.

Example 1. Let f : R → R be given by f(x) = x2, and let a ∈ R. Then f is continuous at a.

Proof. Let ε > 0. Put δ = min{1, ε
2|a|+1}. Let x ∈ R with |x− a| < δ. Put h = x− a, so x = a + x.

Then

|f(x)− f(a)| = |f(a + h)− f(a)|
= |(a + h)2 − a2|
= |a2 + 2ah + h2 − a2|
= |2ah + h2|
= |2a + h||h|
≤ (|2a|+ |h|)|h|
≤ (2|a|+ 1)|h| (since |h| < 1)
< (2|a|+ 1)δ
= ε,

as required.

Example 2. Define f : R → R by f(x) = sin
(

1
x

)
for x 6= 0, f(0) = 0. Then f is not continuous at

0.

Proof. Suppose for a contradiction that f is continuous at 0. Then, since 1
2 > 0, there is some

δ > 0 such that if |x − 0| < δ then |f(x) − f(0)| < 1
2 . Choose n ∈ N with n > 1

2

(
2
πδ − 1

)
. Then

2n+1 > 2
πδ , so (2n+1)π

2 > 1
δ , so 2

(2n+1)π < δ. Put x = 2
(2n+1)π . Then |x| < δ, so |f(x)| < 1

2 . However,
f(x) = sin

(
(2n + 1)π

2

)
, so f(x) = ±1, so |f(x)| = 1 ≮ 1

2 . This contradiction shows that there is no
such δ, and hence f is not continuous at 0.

The intermediate value theorem

Theorem 3 (The intermediate value theorem). Let f : [a, b] → R be continuous, and let k ∈ R
with f(a) < k < f(b). Then there is some c ∈ (a, b) with f(c) = k.
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Proof. Put S = {x ∈ [a, b] : f(x) < k }. Then a ∈ S so S 6= ∅, and S is bounded above by b, so S
has a supremum. Put c = supS.

Claim: f(c) ≮ k.

For: Suppose for a contradiction that f(c) < k. Put ε = k − f(c), and choose δ > 0 so that
if x ∈ [a, b] with |x − c| < δ then |f(x) − f(c)| < ε. Note that if |f(x) − f(c)| < ε then
f(x) − f(c) < ε = k − f(c), so f(x) < f(c). Thus |b − c| ≮ δ, so c + δ ≤ b. Put x = c + δ

2 .
Then x > c = supS, so x /∈ S. However, f(x) < f(c) + ε = k, and x ∈ [a, b], so x ∈ S. This
contradiction showws that we cannot have f(c) < k.

Claim: f(c) ≯ k.

For: Suppose for a contradiction that f(c) > k. Put ε = f(c) − k. Choose δ > 0 such that if
x ∈ [a, b] with |x − c| < δ then |f(x) − f(c)| < ε. Since δ > 0 and c = sup S, there is some
x ∈ S with c − δ < x ≤ c. But then |x − c| < δ, so |f(x) − f(c)| < ε, so f(x) − f(c) > −ε =
−(f(c) − k) = k − f(c). Thus f(x) > k. But this contradicts the assumption that x ∈ S so
f(x) < k. Hence there is no such x and therefore we cannot have f(c) > k.

Thus we cannot have f(c) < k or f(c) > k, so f(c) = k, as required. Finally, note that since a ∈ S
and b is an upper bound for S, a ≤ supS ≤ b, i.e. a ≤ c ≤ b. Since f(a) 6= f(c) 6= f(b) we have
a 6= c 6= b so a < c < b, i.e. c ∈ (a, b) as required.

Tuesday: Continuity in terms of limits, open and closed sets and
sequences

Limits of functions

Definition. Let a ∈ R and let ε > 0. We define the ε-ball centred at a, Bε(a), by

Bε(a) = {x ∈ R : |x− a| < ε },

and the deleted ε-ball centred at a, B′
ε(a), by B′

ε(a) = Bε(a) \ {a}.

Definition. Let A ⊆ R and let a ∈ R. Then a is a limit point of A if, for every ε > 0, Bε(a)∩A 6= ∅,
and a is an accumulation point of A if for all ε > 0, B′

ε(a) ∩A 6= ∅.

Definition. Let A ⊆ R, let f : A → R be a function, let a be an accumulation point of A and let
L ∈ R. We say that limx→a f(x) = L if for all ε > 0 there is a δ > 0 such that for all x ∈ A, if
0 < |x− a| < δ then |f(x)− L| < ε.

Notice the big difference between the definition of a limit and the definition of continuity: we insist
that 0 < |x− a| < δ, in other words we do not test whether |f(x)− L| < ε holds at x = a, only at
values of x close to but not exactly equal to a. Thus, for example limx→0

sin x
x makes sense without

having to explain that we never intend to evaluate sin 0
0 .
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Example 4. Define the function f : R → R by f(x) = x if x /∈ Z, f(x) = 0 if x ∈ Z. Then
limx→2 f(x) = 2.

The two definitions, continuity and limits, fit together by the following result.

Theorem 5. Let A ⊆ R and let f : A → R be a function. Then f is continuous if and only if, for
every a ∈ A, if a is an accumulation point of A then limx→A f(x) = f(a).

Proof. Exercise.

Open and closed sets

Definition. A subset U of R is open if for every x ∈ U there is some ε > 0 such that Bε(x) ⊆ U .
A subset C of R is closed if CC

R is open.

Proposition 6. Let C ⊆ R. Then C is closed if and only if, for every sequence (sn) in C, if
(sn) → a as n →∞ then a ∈ C.

Proof. Suppose first that C is closed. We must show that if (sn) is a convergent sequence in C
then the limit of the sequence is also in C. So suppose that sn → a as n → ∞. Suppose, for a
contradiction that a /∈ C. Then a ∈ CC, and CC is open, so there is an ε > 0 such that Bε(a) ⊆ CC.
Since sn → a, there is an N ∈ N such that for n > N , |sn − a| < ε. But then sN+1 ∈ Bε(a), so
sN+1 ∈ CC, contradicting the assumption that (sn) is a sequence in C. So we cannot have a /∈ C,
so a ∈ C.

Conversely, suppose that for every sequence in C, if sn → a then a ∈ C. Put U = CC. We must
show that U is open. So let a ∈ U . Suppose, for a contradiction, that there is no ε > 0 with
Bε(a) ⊆ U . In particular, for each n ∈ N we have B 1

n
(a) * U , so there is some sn ∈ B 1

n
(a) \U . But

then sn /∈ CC, so sn ∈ C.

Claim: sn → a as n →∞.

For: Let ε > 0. Choose N ∈ N with N > 1
ε . Then 1

N < ε. Let n ∈ N with n > N . Then 1
n < 1

N .
Since sn ∈ B 1

n
(a), |sn − a| < 1

n < 1
N < ε, so |sn − a| < ε as required.

Thus (sn) is a sequence in C which converges to a, but a /∈ C, contradicting our assumption about
C.

Lemma 7. Let f : R → R be a continuous function. For every open set U , f−1(U) is open.

Proof. Let U be open, and let a ∈ f−1(U). Then f(a) ∈ U , so there is some ε > 0 such that
Bε(f(a)) ⊆ U . By continuity, there is some δ > 0 such that if |x− a| < δ then |f(x)− f(a)| < ε.
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Claim: Bδ(a) ⊆ f−1(U).

For: Let x ∈ Bδ(a). Then |x− a| < δ, so |f(x)− f(a)| < ε, so f(x) ∈ Bε(f(a)) ⊆ U , so f(x) ∈ U ,
so x ∈ f−1(U), as required.

The converse is also true: to prove it, we first have to use the triangle inequality to prove that every
ε-ball Bε(a) is open.

Lemma 8. Let f : R → R be a function. Then f is continuous if and only if, for every sequence
(sn) in R, if sn → a as n →∞ then f(sn) → f(a) as n →∞.

Proof. Suppose first that f is continuous. Let (sn) be a sequence in R. Suppose sn → a as n →∞.
Let ε > 0. By continuity, there is some δ > 0 such that if |x− a| < δ then |f(x)− f(a)| < ε. Since
sn → a, there is some N such that if n > N then |sn − a| < δ. Let n > N . Then |sn − a| < δ, so
|f(sn)− f(a)| < ε, as required.

We leave the converse as an exercise.

Thursday: Differentiability

In today’s lecture we will learn exactly what it means for a function to be differentiable. Before
doing that, we will find a little more about limits.

Limits of products and quotients

Theorem 9. Let A ⊆ R, let f, g : A → R be functions, and let c be an accumulation point
of A. If limx→c f(x) and limx→c g(x) both exist then limx→c f(x)g(x) exists and is equal to
limx→c f(x) limx→c g(x).

Proof. Let F = limx→c f(x) and G = limx→c g(x). Put η = ε
|G|+ 1

2
+|F | . Choose δ1δ2 > 0 so that if

0 < |x− c| < δ1 then |f(x)−F | < η and if x ∈ A with 0 < |x− c| < δ2 then |g(x)−G| < min{η, 1
2}.

Note that if x ∈ A with 0 < |x−c| < δ2 then |g(x)−G| < 1
2 so |g(x) < |G|+ 1

2 . Put δ = min{δ1, δ2}.
Let x ∈ A with 1 < |x− c| < δ. Then

|f(x)g(x)− FG| = |f(x)g(x)− Fg(x) + Fg(x)− FG|
≤ |f(x)g(x)− Fg(x)|+ |Fg(x)− FG| (triangle inequality)
= |f(x)− F ||g(x)|+ |F ||g(x)−G|

≤ η(|G|+ 1
2
) + |F |η

= ε
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Thus limx→c f(x)g(x) exists and equals FG.

Note that we might be a little lazy and write this as “limx→c f(x)g(x) = limx→c f(x) limx→c g(x)”.
However, we must remember that limits need not exist, and the existence of the limit is part of
the assertion. Also the converse does not hold: it is quite possible for limx→c f(x)g(x) but neither
limx→c f(x) nor limx→c g(x) to exist.

Theorem 10. Let A ⊆ R, let f : A → R be a function, and let c be an accumulation point of A. If
limx→c f(x) exists and is non-zero then limx→c

1
f(x) exists and is equal to 1

limx→c f(x) .

Proof. Exercise. Note that we need to choose δ small enough to ensure that f(x) is non-zero within
a distance of δ from c: in fact we will want to ensure that 1

f(x) does not get too large—say, does
not get larger than 2F where F = limx→c f(x)—so we will choose δ small enough to ensure that
|f(x)−F | < F

2 , which ensures that |f(x)| > |F − F
2 |. See the proof that if bn → B 6= 0 then 1

bn
→ 1

B
in the notes for week 11 for more ideas.

Exercise 11. Let A ⊆ R, let f, g : A → R be functions, and let c be an accumulation point
of A. If limx→c f(x) and limx→c g(x) both exist then limx→c f(x) + g(x) exists and is equal to
limx→c f(x) + limx→c g(x).

Differentiability

Definition. Let A ⊆ R. If c ∈ A, we say that c is an interior point of A if there is some ε > 0
such that Bε(c) ⊆ A. We denote the set of interior points of A by int(A).

Thus A is open if and only if every point of A is an interior point of A, i.e. if A = int(A).

Definition. Let A ⊆ R, let f : A → R be a function and let c ∈ int(A). We say that f is
differentiable at c if limx→c

f(x)−f(c)
x−c exists, or equivalently if limh→0

f(c+h)−f(c)
h exists. If the limit

exists, we denote it by f ′(c), and call this number the derivative of f at c. For S ⊆ int(A) we say
that f is differentiable on S if f is differentiable at all c ∈ S. When A is open we say that f is
differentiable if it is differentiable on A.

Example 12. Define f : R → R by f(x) = x2. Then f is differentiable and, for all c ∈ R,
f ′(c) = 2c.

Proof. For all h 6= 0 we have

f(c + h)− f(c)
h

=
(c + h)2 − c2

h

=
c2 + 2ch + h2 − c2

h

=
2ch + h

h
= 2c + h

Now limh→0 2c + h = 2c, so f ′(c) exists and equals 2c, as required.
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Theorem 13. Let A ⊆ R, let f : A → R be a function and let c ∈ int(A). If f is differentiable at c
then f is continuous at c.

Proof. Suppose f is differentiable at c. Then limx→c
f(x)−f(c)

x−c exists and equals f ′(c). We also

have limx→c(x− c) exists and equals 0. So by Theorem 9, limx→c
f(x)−f(c)

x−c (x− c) exists and equals
f ′(c) · 0 = 0. So limx→c(f(x)− f(c) = 0, so limx→c f(x) = f(c), so f is continuous at c.

Friday: Rolle’s Theorem and the Mean Value Theorem

Lemma 14. Let a, b ∈ R with a < b, and let f : [a, b] → R be continuous. Then f is bounded and
attains its bounds. In other words, there exist c, d ∈ [a, b] with f(c) = max{ f(x) : x ∈ [a, b] } and
f(d) = min{ f(x) : x ∈ [a, b] }.

Proof. First we will show that f is bounded. Suppose, for a contradiction, that f is unbounded
above. For each n ∈ N we can find some xn ∈ [a, b] with f(xn) > n. Now the sequence (xn) is
bounded, so it has a convergent subsequence, (xin) say. Let x be the limit of this subsequence. Since
(xn) is a sequence in [a, b], which is closed, we have x ∈ [a, b]. But then f(xin) converges to f(x),
which is impossible because (f(xin)) is an unbounded sequence.

Similarly, f is bounded below.

Put s = sup{ f(x) : x ∈ [a, b] }. For every n, there is some yn ∈ [a, b] with s − 1
n < f(yn) ≤ s.

Then (yn) is a bounded sequence in [a, b], so it has a subsequence (yjn) which converges to some
c ∈ [a, b]. By continuity, (f(yj,n)) converges to f(c). But, by construction, (f(yjn) converges to s.
So f(c) = s = sup{ f(x) : x ∈ [a, b] }. So f(c) = max{ f(x) : x ∈ [a, b] }.

Similarly, f attains its infimum.

Definition. Let A ⊆ R, let f : A → R be a function and let a ∈ A. Then a is a local maximum of
f if there is some ε > 0 such that for all x ∈ A with |x − a| < ε we have f(x) ≤ f(a). Similarly,
a is a local minimum of f if there is some ε > 0 such that for all x ∈ A with |x − a| < ε we have
f(x) ≥ f(a).

Theorem 15. Let A ⊆ R, let f : A → R be a function and let a ∈ intA. If f ′(a) exists and a is a
local maximum or local minimum of f then f ′(a) = 0.

Proof. Exercise.

Note that we need both f ′(a) exists and a ∈ int(A) as hypotheses here: consider the examples
f : [0, 1] → R given by f(x) = x, which has 1 as a local maximum, and g : R → R given by
g(x) = |x| which has 0 as a local minimum.

Theorem 16 (Rolle’s Theorem). Let a, b ∈ R with a < b. Let f : [a, b] → R be continuous, and
differentiable on (a, b). Suppose f(a) = f(b). Then there is some c ∈ (a, b) with f ′(c) = 0.
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Proof. Put k = f(a) = f(b). We know that f is continuous on [a, b] so it attains its maximum at
some c ∈ [a, b]. Suppose first that c 6= a and c 6= b. Then c ∈ (a, b), so c is a local maximum of f ,
and f ′(c) exists, so by the previous result we must have f ′(c) = 0.

Similarly, we know that f attains its minimum at some d ∈ [a, b], and if d 6= a, b then d ∈ (a, b) and
f ′(d) = 0.

The only remaining possibility is that c, d ∈ {a, b}. But then we must have f(x) = k for all x ∈ [a, b],
so f ′(x) = 0 for all x ∈ (a, b).

Theorem 17 (Mean Value Theorem). Let a, b ∈ R with a < b and let f : [a, b] → R be
continuous, and differentiable on (a, b). Then there is some c ∈ (a, b) with f ′(c) = f(b)−f(a)

b−a .

Proof. Put k = f(b)−f(a)
b−a and define g : [a, b] → R by g(x) = f(x) − kx. Then g is continuous on

[a, b] and differentiable on (a, b), with g′(x) = f ′(x)− k. Also

g(b)− g(a) = f(b)− kb− f(a)− ka

= (f(b)− f(a))− k(b− a)

= (f(b)− f(a))− f(b)− f(a)
b− a

(b− a)

= 0,

so g(a) = g(b). Hence by Rolle’s Theorem there is some c ∈ (a, b) with g′(c) = 0. But then
f ′(c)− k = 0, so f ′(c) = k, as required.
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