
Department of Mathematics

MATHS 255 Lecture outlines for week 10

Monday: Completeness

The ordered field axioms are not yet enough to characterise the real numbers, as there are other
examples of ordered fields besides the real numbers. The most familiar of these is the set of rational
numbers. The final axiom we give is the completeness axiom, which is satisfied by R but not by Q.

Definition. A complete ordered field is an ordered field F with the least upper bound property (in
other words, with the property that if S ⊆ F , S 6= ∅ and S is bounded above then S has a least upper
bound supS).

Example 1. The real numbers are a complete ordered field.

We will see in a moment that the rational numbers are not complete.

Lemma 2. Let F be a complete ordered field, and let S ⊆ F , x ∈ F . Then the following are
equivalent:

• x = supS

• x is an upper bound for S and, for each ε ∈ F with ε > 0F there is some s ∈ S with
x− ε < s ≤ x.

Proposition 3 (The Archimedean property of R). For every x ∈ R there is some n ∈ N with
n > x.

Proof. Let x ∈ R. Suppose, for a contradiction, that there is no n ∈ N with n > x. Then, since
≤ is a total order, we have n ≤ x for all n ∈ N. Thus N is bounded above. We also have N 6= ∅,
so N must have a least upper bound, s. Since s = sup N and 1 > 0, there is some n ∈ N with
s− 1 < n ≤ s. But then s < n + 1, so n + 1 � s. However, n + 1 ∈ N and s is an upper bound for N
so n + 1 ≤ s. This contradiction shows that there must be some n ∈ N with n > x, as required.

Proposition 4. There is some real number a with a2 = 2.

Proof. Let S = {x ∈ R : x2 < 2 }.

Claim: S 6= ∅.

For: 02 = 0 < 2, so 0 ∈ S.

Claim: S is bounded above.

For: We will show that 2 is an upper bound for S. So, let x ∈ S. Suppose, for a contradiction, that
x � 2. Then x > 2, so x2 > 22 = 4 > 2, so x2 ≮ 2, contradicting the assumption that x ∈ S.
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From this we know that S has a least upper bound. Put a = supS: we will show that a2 = 2 as
required.

Claim: a2 ≮ 2.

For: Suppose, for a contradiction, that a2 < 2. Put p = 2 − a2 and ε = p
5 . Notice that a ≤ 2,

because 2 is an upper bound for S, and 0 < p ≤ 2 so ε < 1

(a + ε)2 = a2 + 2aε + ε2

< a2 + 2 · 2 · ε + 1 · ε (since a ≤ 2 and ε < 1)

= a2 + 5ε

= 2.

So we have (a+ ε)2 < 2, so a+ ε ∈ S. But a < a+ ε, contradicting the fact that a is an upper
bound for S. Thus we cannot have a2 < 2.

Claim: a2 ≯ 2.

For: Suppose, for a contradiction, that a2 > 2. Put r = a2 − 2, and ε = r
4 . Then ε > 0, so since

a = supS there is some s ∈ S with a− ε < s ≤ a. Since s > a− ε we have

s2 > (a− ε)2

= a2 − 2aε + ε2

≥ a2 − 4ε (since ε2 ≥ 0)
= 2,

so s2 > 2, contradicting the assumption that s ∈ S. This shows that we cannot have a2 > 2.

Hence we must have a2 = 2, as required.

Tuesday: Sequences

Sequences [5.5, 8.5]

Definition. Let A be a set. A sequence in A is a function s : N → A. We usually write s(n) as sn,
and we write (sn) or s1, s2, s3, . . . for the whole sequence.

Example 5. The sequence (n−1
n ) has sn = n−1

n , so it is the sequence 0, 1
2 , 2

3 , 3
4 . . . .

Definition. Let (sn) be a sequence in R. We say that (sn) is

• increasing if for all n ∈ N, sn ≤ sn+1;

• strictly increasing if for all n ∈ N, sn < sn+1;
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• decreasing if for all n ∈ N, sn ≥ sn+1;

• strictly decreasing if for all n ∈ N, sn > sn+1;

• monotonic if it is either increasing or decreasing;

• bounded above if { sn : n ∈ N } is bounded above;

• bounded below if { sn : n ∈ N } is bounded below; and

• bounded if it is both bounded above and below.

Example 6. The sequence (n−1
n ) is strictly increasing (si it is increasing, so it is monotone), and

is bounded above by 1 and below by 0, so it is bounded.

Definition. For a ∈ R we define |a| by

|a| =

{
a if a ≥ 0,
−a otherwise.

Thus we have |a| ≥ 0 for all a ∈ R, with |a| > 0 unless a = 0.

Proposition 7. For any a, x ∈ R, ε ∈ R with ε > 0, we have |a− x| < ε iff a− ε < x < a + ε.

Proof. Exercise.

Definition. Let (sn) be a sequence in R, and let L ∈ R. We say that (sn) converges to L if for
every ε ∈ R with ε > 0 we can find an N ∈ N such that for all n > N , |sn−L| < ε. If (sn) converges
to L, we write sn → L as n →∞, and call L a limit of the sequence (sn).

Example 8. The sequence (n−1
n ) converges to 1.

Example 9. The sequence 1,−1
2 , 1

3 ,−1
4 , 1

5 , . . . converges to 0.

Theorem 10. If the sequence (sn) in R has a limit, then the limit is unique.

Thursday: Subsequences and monotonic sequences

Subsequences [5.5]

A subsequence of a sequence (sn) is a sequence formed by taking certain terms from the original
sequence, in the same order as they appeared in the original sequence. For example, if we have the
sequence 1, 1

2 , 1
3 , 1

4 , . . . then we may form the subsequence 1, 1
4 , 1

9 , 1
16 , . . . . More precisely, we have

the following definition.

Definition. A subsequence of a sequence (sn) is a sequence (sin), where (in) is a strictly increasing
sequence in N.

Lemma 11. If (in) is a strictly increasing sequence in N then for all n ≤ in, n ≤ in.
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Proof. Exercise.

Proposition 12. Let (sn) be a sequence in R, and (sin) a subsequence of (sn). If sn → L as n →∞
then sin → L as n →∞.

Proof. Suppose sn → L as n →∞. Let ε > 0. Choose N ∈ N such that if n > N then |sn −L| < ε.
Now let n > N . Then in ≥ n > N , so in > N , so |sin − L| < ε.

Theorem 13. Let (sn) be a monotonic bounded sequence in R. Then (sn) converges to some L ∈ R

Proof. Suppose first that (sn) is increasing. The set S = { sn : n ∈ N } is non-empty (since s1 ∈ S)
and bounded above, so it has a least upper bound, L say. We claim that sn → L as n → ∞. So
let ε > 0. Then there is some s ∈ S with L − ε < s ≤ L. Now, s ∈ S so s = sN for some N ∈ N.
Let n > N . Then sN ≤ sn, since (sn) is increasing, so we have L − ε < sN ≤ sn ≤ L < L + ε, so
L− ε < sn < L + ε, so |sn − L| < ε. Thus sn → L, as claimed.

We leave the case when (sn) is a decreasing sequence as an exercise.

Theorem 14. Let (sn) be a sequence in R. Then (sn) has a subsequence which is monotonic.

The idea is as follows: we give a method for constructing an increasing subsequence in (sn), which
will work unless some particular thing goes wrong. We will then give an alternative method which
gives a decreasing subsequence, and which will work if that particular thing went wrong with the
first method.

Lemma 15. Let (sn) be a sequence in R with no greatest term. Then (sn) has an increasing
subsequence.

Proof. We construct the subsequence (sin) recursively. The sequence has the property that

for all j, k ∈ N, if j ≤ ik then sj ≤ sik . (∗)

First we let i1 = 1. This certainly satisfies (∗) since there is no j with j < 1. Now suppose we have
chosen i1 < i2 < · · · < in satisfying (∗). We know that sin is not the greatest term in the sequence,
since there is no greatest term, so there is some m with sin < sm. However, sj ≤ sin for all j ≤ in,
so if sin < sm then m > in. We let in+1 be the least m > in with sin ≤ sm. We must check that
this choice also satisfies (∗). We have assumed that it is satisfied for all iks for k ≤ n, so we only
need to check it for in+1. So suppose j < in+1. If j ≤ in then sj ≤ sin ≤ sin+1 . If in < j < in+1

then, since in+1 was the least m with sin ≤ sm, we must have sj < sin ≤ sin+1 .

Clearly, the subsequence (sin) we have constructed is an increasing sequence, as required.

Proof of Theorem 14. Let (sn) be a sequence in R. There are two possibilities: either there is an
n ∈ N such that { sm : m > n } has no greatest element, or there is no such n. In the latter case,
for every n ∈ N, { sm : m > n } has a greatest element.
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Case 1: Suppose there is some n0 such that { sm : m > n0 } has no greatest element. For each
k, put tk = sn0+k. Then (tk) has no greatest element, so by the previous lemma it has an
increasing subsequence (tik). But then (sn0+ik) is an increasing subsequence of (sn).

Case 2: Suppose that for every n ∈ N, { sm : m > n } has a greatest element. Recursively choose
a subsequence of (sn) as follows: i1 is chosen so that si1 ≥ sm for all m > 1, and once
i1 < i2 < · · · < in have been chosen, in+1 is chosen so that in < in+1 and sin+1 ≥ sm for all
m > n. Since { sm : m > n } always has a greatest element, we can always find such i1 and
in+1. It remains only to show that this gives a decreasing subsequence. Note that for each n
we have that sin is the greatest element of { sm : m > k } for some k < in, so sin ≥ sm for all
m > k. In particular, since k < in < in+1, sin ≥ sin+1 as required.

Friday: Cauchy sequences

We know what it means to say that (sn) converges to L. To say that (sn) converges means that
(sn) converges to some L, i.e.

(∃L)(∀ε > 0)(∃N ∈ N)(∀n > N)(|sn − L| < ε).

This is rather complicated: it has an extra layer of complexity with the extra change between ∃ and
∀ quantifiers. It is also awkward to check, since we have to find the limit L before we can check
that the condition holds. An alternative property, which only mentions the sequence itself and not
its possible limit, is the “Cauchy convergence criterion”:

Definition. A sequence (sn) in R is a Cauchy sequence if for all ε > 0 there exists N ∈ N such
that for all m,n > N , |sm − sn| < ε.

We will prove that a sequence (sn) in R converges if and only if it is a Cauchy sequence.

Lemma 16 (The Triangle Inequality). Let a, b ∈ R. Then |a + b| ≤ |a| + |b|, and hence, if
x, y, z ∈ R then |x− z| ≤ |x− y|+ |y − z|.

Proof. Exercise.

Proposition 17. Let (sn) be a sequence in R. If (sn) converges then (sn) is bounded.

Proof. Suppose sn → L as n →∞. Putting ε = 1
2 , we know that there is some N ∈ N such that if

n > N then |sn − L| < 1
2 . So, for n > N we have

|sn| = |(sn − L) + L| ≤ |sn − L|+ |L| < |L|+ 1
2 .

Thus for every n we have |sn| ≤ max{|s1|, |s2|, . . . , |sN |, |L|+ 1
2 }. So (sn) is bounded.

Lemma 18. Let (sn) be a bounded sequence. Then (sn) has a convergent subsequence.
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Proof. We know that any sequence in R has a monotonic subsequence, and any subsequence of a
bounded sequence is clearly bounded, so (sn) has a bounded monotonic subsequence. But every
bounded monotonic sequence converges. So (sn) has a convergent subsequence, as required.

Lemma 19. Let (sn) be a Cauchy sequence in R. If (sn) has a convergent subsequence then (sn)
converges.

Proof. Let (sin) be a subsequence which converges to L. Let ε > 0. Put η = ε/2. Choose N1 so
that if m,n > N1 then |sm − sn| < η, choose N2 so that if n > N2 then |sin − L| < η, and choose k
so that k > N2 and ik > N1 (for example, we may take k = max{N1 + 1, N2 + 1}: certainly k > N2

and ik ≥ k > N1). Put N = N1. Then

|sn − L| = |sn − sik + sik − L|
≤ |sn − sik |+ |sik − L| (triangle inequality)
< η + |sik − L| (since n, ik > N1)
< η + η (since k > N2)
= ε.

Thus |sn − L| < ε as required. So (sn) converges to L.

Lemma 20. Every Cauchy sequence in R is bounded.

Proof. Take ε = 1 in the definition. Then there exists N such that |am − an| < 1 for all m,n > N .
In particular |am| = |am− aN+1 + aN+1| < |am− aN+1|+ |aN+1| < 1+ |aN+1| (since N +1 > N).
So if K = max{|a1|, |a2|, . . . , |aN |, |aN+1 + 1|} then |am| ≤ K for all m.

Lemma 21. Every convergent sequence in R is Cauchy.

Proof. Exercise.

Putting these results together gives our main result:

Theorem 22. A sequence in R is a Cauchy sequence if and only if it converges.

Limits of sums and products

Theorem 23. Let (an), (bn) be sequences in R. Suppose that an → A and bn → B as n → ∞.
Then

1. an + bn → A + B as n →∞;

2. anbn → AB as n →∞; and

3. if bn 6= 0 for all n and B 6= 0 then an
bn
→ A

B as n →∞.
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Proof. For (1), let ε > 0. Put η = ε/2. Choose N1, N2 ∈ N such that if n > N1 then |an − A| < η
and if n > N2 then |bn −B| < η. Put N = max{N1, N2}. Let n > N . Then

|(an + bn)− (A + B)| = |(an −A) + (bn −B)|
≤ |an −A|+ |bn −B| (triangle inequality)
< η + η (since n > N1 and n > N2)
= ε.

so an + bn → A + B as n →∞.

For (2), let ε > 0. Since (bn) converges, it is bounded, so there is some P > 0 with |bn| < P for all
n. Put η = ε

|A|+P . Choose N1, N2 ∈ N such that if n > N1 then |an − A| < η and if n > N2 then
|bn −B| < η. Put N = max{N1, N2}. Let n > N . Then

|anbn −AB| = |anbn −Abn + Abn −AB|
≤ |anbn −Abn|+ |Abn −AB| (triangle inequality)
= |an −A||bn|+ |A||bn −B|
= |an −A|P + |A||bn −B|
< ηP + |A|η
= ε

Thus anbn → AB as n →∞.

For (3), we will first prove that 1
bn
→ 1

B and then apply 2. So let ε > 0. Put η = |B|2ε
2 . Since B 6= 0,

|B|
2 > 0, so there is some N1 such that if n > N1 then |bn − B| < |B|

2 . Note that if n > N1 then

|bn| > |B| − |B|
2 = |B|

2 , so
∣∣∣ 1
bn

∣∣∣ < 2
|B| . Choose N2 ∈ N such that if n > N2 then |bn − B| < η. Put

N = max{N1, N2}. Let n > N . Then∣∣∣∣ 1
bn

− 1
B

∣∣∣∣ =
∣∣∣∣B − bn

bnB

∣∣∣∣
=

∣∣∣∣ 1
bn

∣∣∣∣ ∣∣∣∣ 1
B

∣∣∣∣ |B − bn|

<
2
|B|

1
|B|

|bn −B|

<
2

|B|2
η

= ε,

so 1
bn
→ 1

B as n →∞. The result then follows by (2).
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