THE UNIVERSITY OF AUCKLAND MATHS 255

TERM TEST, Second Semester 2004

Principles of Mathematics

(Time allowed: 50 MINUTES)

Family Name

Given Names

By signing this cover sheet I confirm that I am the student whose name appears above:

Signed

- Answer all the questions in the spaces provided.
- The marks for each part of each question are shown.
- The total number of marks is 40.

Family Name

Given Names

ID Number

Question	Mark
1	
2	
3	
4	
5	
Total	

1. (a) Complete the truth table for the following proposition P

A	В	A	\vee	В	\implies		(A	\implies	B)
Т	Т								
Т	F								
F	Т								
F	F								

(2 marks)

(b) Is this a tautology? Explain.(1 mark)(c) Write the contrapositive of P(1 mark)(d) Express $\neg(A \implies B)$ using \neg and \land only.(2 marks)(e) Write the converse of P using the expression in (d).(1 mark)(f) Is the converse of P true? Give a reason.(1 mark)

- **2.** (a) Give a direct proof that if n is an even integer than 5n + 3 is odd. (4 marks)
 - (b) Use proof by contradiction to show that 48 cannot be written as the sum of three integers, an odd number of which are odd. (4 marks) NOTE: The proof consists of two simple cases.

- **3.** (a) Show that if $A, B, C \subseteq U$ then $B \subseteq C \implies A \setminus C \subseteq A \setminus B$. (4 marks)
 - (b) Let $f: Q \to R$ and $g: P \to Q$ be functions such that $f \circ g$ is onto. Show that if g is not onto then f cannot be one to one. (5 marks)

4. Prove by induction that for every $n \in \mathbb{N}$, $81 \mid (10^{n+1} - 9n - 10)$. (7 marks)

5. Consider the poset (S, \preceq) where S is the set of points in \mathbb{R}^2 :

$$S = \{(2,5), (5,2), (3,5), (5,6), (6,2), (6,5), (6,6)\} \text{ and} (a,b) \leq (c,d) \iff (a \leq c) \land (b \leq d).$$

(a)	Draw a lattice diagram	for (S, \preceq) .	(2 ma	$\operatorname{arks})$

- (b) Find any maximal, minimal, greatest and least elements. (2 marks)
- (c) Find a subset containing (3,5) which has no lower bound. (2 marks)
- (d) Find a subset which is bounded below but has no greatest lower bound. (2 marks)