- 1. Let S be the set $\{1, 2, 3, 4, 5, 6\}$.
 - (a) Let ρ be the relation

 $\rho = \{(1,1), (1,5), (2,2), (2,3), (2,6), (3,2), (3,3), (3,6), (4,4), (5,1), (5,5), (6,2), (6,3), (6,6)\}$

Verify that ρ is an equivalence relation on S. Find all equivalence classes and check the collection of distinct classes is a partition of S.

Reflexive: $x \in S \implies (x, x) \in \rho$ and so $x\rho x$. **Symmetric**: $(x, y) \in \rho \implies (y, x) \in \rho$. **Transitive**: Suppose $(x, y) \in \rho \land (y, z) \in \rho$. We may suppose $x \neq y, x \neq z$ and $y \neq z$. Check the transitivity when x = 1, 2, 3, 4, 5, respectively. Equivalence classes: $[1] = \{1, 5\}, [2] = \{2, 3, 6\}$ and $[4] = \{4\}$. Let $S_1 = [1], S_2 = [2]$ and $S_3 = [4]$, Then $S = S_1 \cup S_2 \cup S_3$ and $S_i \cap S_j = \emptyset$ whenever $i \neq j$.

(b) Let $S_1 = \{2\}$, $S_2 = \{1, 3, 5\}$ and $S_3 = \{4, 6\}$. Verify that S_1, S_2, S_3 is a partition of S. Define an equivalence relation ρ such that each S_i is an ρ -equivalence class.

Since $S = S_1 \cup S_2 \cup S_3$ and $S_i \cap S_j = \emptyset$ whenever $i \neq j$, it follows that $\{S_1, S_2, S_3\}$ is a partition of S. Let

$$\rho = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,3), (3,1), (1,5), (5,1), (3,5), (5,3), (4,6), (6,4)\}.$$

Then ρ is an equivalence relation and $S_1 = [2], S_2 = [1]$ and $S_3 = [4]$.

Theorem 1 (19). If \sim is an equivalence relation on A then $\Omega = \{T_a : a \in A\}$ is a partition of A.

Conversely, if Ω is a partition of A then the relation ~ defined by declaring that

$$a \sim b \iff (\exists A' \in \Omega) (a \in A' \land b \in A')$$

is an equivalence relation and $\Omega = \{ T_a : a \in A \}.$

n reflexive ⇒ UTa = A.
ach
and ⇒ a eTa =
$$5xeA$$
: $anx3 \Rightarrow ae$ UTa
defa
Hence and VaceA $\Rightarrow ae$ UTa Va ie UTa = A.
ach
Theorem 18: n RST (equiv relation)
 $anb \Rightarrow TanTbd \Rightarrow Ta = Tb$
 $arb \Rightarrow (anx)n(bna)[S]((bna)n(anx))$
 $\Rightarrow (bnx)[T] \Rightarrow xeTb$
 $bnx = Tb$
 $arb \Rightarrow tanTb \Rightarrow Ta \subseteq Tb \Rightarrow xeTb$
 bnd then and $[R] \Rightarrow aeTa \Rightarrow a eTb \Rightarrow bna$
 $(3) \Rightarrow (0) Ta = Tb \Rightarrow TanTb \Rightarrow Ta \subseteq Tb \Rightarrow xeTb$
 bnd then and $[R] \Rightarrow aeTa \Rightarrow a eTb \Rightarrow bna$
 $(3) \Rightarrow (0) Ta = Tb \Rightarrow TanTb \Rightarrow Ta \subseteq Tb \Rightarrow xeTb$
 bnd then and $[R] \Rightarrow aeTa \Rightarrow a eTb \Rightarrow bna$
 $(3) \Rightarrow (0) Ta = Tb \Rightarrow TanTb = tan Tb \Rightarrow dx = (anx)n(bnx)$
 $\Rightarrow 3x: (anx)n(xnb) [S]$
 $(2) \Rightarrow (0) Ta = Tb \Rightarrow TanTb = tan Tb = tan T$