MATHS 255

Solutions for Term Test

1. (a) Complete the truth table for the following proposition P

A	B	$A \lor$	В	\implies	_	(A	\implies	B)
Т	Т	Т		F	F		Т	
Т	F	Т		Т	Т		\mathbf{F}	
\mathbf{F}	Т	Т		F	F		Т	
F	F	F		Т	F		Т	

(b) Is this a tautology? Explain.It is NOT a tautology, as it includes F entries and so the implication is not always true.

- (c) Write the contrapositive of P $(A \implies B) \implies \neg(A \lor B)$
- (d) Express $\neg (A \implies B)$ using \neg and \land only. $A \land \neg B$
- (e) Write the converse of P using the expression in (d). $A \wedge \neg B \implies A \vee B$
- (f) Is the converse of P true? Give a reason. Yes it is true. $A \land \neg B \implies A \implies A \lor B$ If $A \land \neg B$ is true then A is true, so $A \lor B$ is true.
- **2.** (a) Give a direct proof that if n is an even integer then 5n + 3 is odd. n is even $\iff n = 2pp \in \mathbb{Z}$ so 5n + 3 = 5(2p) + 3 = 2(5p + 1) + 1 which is odd.
 - (b) Use proof by contradiction to show that 48 cannot be written as the sum of three integers, an odd number of which are odd.

NOTE: The proof consists of two simple cases.

Either we have one odd number and two even or three odd. Assume the result is true and get a contradiction. Case 1 one odd number x = 2p + 1, y = 2q, z = 2r, 48 = 2p + 1 + 2q + 2r = 2(p + q + r) + 1 odd but $48 = 2 \cdot 24$ even contradiction. Case 2 three odd numbers x = 2p + 1, y = 2q + 1, z = 2r + 1, 48 = 2p + 1 + 2q + 1 + 2r + 1 = 2(p + q + r + 1) + 1 odd but $48 = 2 \cdot 24$ even contradiction.

- **3.** (a) Show that if $A, B, C \subseteq U$ then $B \subseteq C \implies A \setminus C \subseteq A \setminus B$. $B \subseteq C \iff (x \in B \implies x \in C) \iff (x \notin C \implies x \notin B)$ $x \in A \setminus C \iff (x \in A) \land (x \notin C) \implies (x \in A) \land (x \notin B) \iff x \in A \setminus B$
 - (b) Let $f: Q \to R$ and $g: P \to Q$ be functions such that $f \circ g$ is onto. Show that if g is not onto then f cannot be one to one. Since g is not onto $\exists q \in Q : \nexists p \in P : g(p) = q$. Now consider $f(q) \in R$. $f \circ g$ is onto, so $\exists p' \in P : (f \circ g)(p') = f(q)$. $g(p') \neq q$ because there is no such $p \in P : g(p) = q$, but f(g(p')) = f(q), so f not one to one.

4. Prove by induction that for every $n \in \mathbb{N}$, $81 \mid (10^{n+1} - 9n - 10)$. P(1) true. $10^2 - 9 - 10 = 100 - 19 = 81$ and $81 \mid 81$. If P(k) then $10^{k+1} - 9k - 10 = 81n$, so $10^{k+1} = 81n + 9k + 10$ Now consider

$$10^{k+2} - 9(k+1) - 10 = 10 \cdot 10^{k+1} - 9k - 10$$

= 10(81n + 9k + 10) - 9k - 19
= 81 \cdot 10n + 90k + 100 - 9k - 19
= 81 \cdot 10n + 81k + 81
= 81(10n + k + 1).

So P(k+1) also true so P(n) true $\forall n \in \mathbb{N}$.

5. Consider the poset (S, \preceq) where S is the set of points in \mathbb{R}^2 :

$$S = \{(2,5), (5,2), (3,5), (5,6), (6,2), (6,5), (6,6)\} \text{ and} (a,b) \leq (c,d) \iff (a \leq c) \land (b \leq d).$$

(a) Draw a lattice diagram for (S, \preceq) .

- (b) Find any maximal, minimal, greatest and least elements. (6, 6) is both maximal and greatest. (2, 5) and (5, 2) are minimal.
- (c) Find a subset containing (3,5) which has no lower bound. $\{(3,5), (6,2)\}$ or $\{(3,5), (5,2)\}$. There are others.
- (d) Find a subset which is bounded below but has no greatest lower bound. $\{(5,6), (6,5)\}$