MATHS 255

1. (3x4=12 marks)

(a) The algorithm gives us

From which we see that gcd(78, 72) = 6 and $6 = 78 \cdot (1) + 72 \cdot (-1)$. Now gcd(78, 72) = 6 does not divide 13 so there are no integer solutions.

- (b) $gcd(78,72) = 6 \mid 12$ so there are integer solutions: $12 = 6 \cdot 2 = 78 \cdot (2) + 72 \cdot (-2)$. Hence the general solution is $x = -2 t \cdot \frac{78}{6} = -2 t \cdot 13, t \in \mathbb{Z}$.
- (c) The algorithm gives us

n	x	y	
240	1	0	r_1
77	0	1	r_2
9	1	-3	$r_3 = r_1 - 3r_2$
5	-8	25	$r_4 = r_2 - 8r_3$
4	9	-28	$r_5 = r_3 - r_4$
0	-17	53	$r_6 = r_4 - r_5$

From this we see that $gcd(77, 240) = 1 = 77 \cdot (53) + 240 \cdot (-17)$. gcd(77, 240) = 1 | 53 so there are integer solutions: $53 = 1 \cdot 53 = 77 \cdot (53 \cdot 53) + 240 \cdot (-17 \cdot 53) = 77 \cdot (2809) + 240 \cdot (-17 \cdot 53)$. Hence the general solution is $x = 2809 - t \cdot \frac{240}{1} = 2809 - t \cdot 240t \in \mathbb{Z}$.

- 2. (4 marks) Solve the equation $\overline{53} = \overline{77} \cdot_{240} \overline{x}$ in \mathbb{Z}_{240} . Using the above solutions, we have $\overline{53} = \overline{77} \cdot_{240} \overline{x} \iff 53 = 77x + 240y$, so the solutions are $x = 2809 t \cdot 240t$. Each of these is in the same equivalence class since they differ by a multiple of 240 and the representative solution in the range $0 \dots 239$ is $x = 2809 11 \cdot 240 = 169$.
- **3.** (a) (**6 marks**) Checking each of the cases

x	$2x^2 - 3x \pmod{240}$
0	0
1	6
2	2
3	2
4	6
5	0
6	5

Hence the solutions are x = 1, 4.

x	$4x \pmod{10}$
0	0
1	4
2	8
3	2
4	6
5	0
6	4
7	8
8	2
9	6

(b) (6 marks) $28x \equiv 42 \pmod{70} \iff 4x \equiv 6 \pmod{10}$. Checking cases we have

Hence the solutions are x = 4, 9.

- 4. (6 marks) $(5n+6)(13n+7)(7n+8) \equiv 5n(n+1)(n+2) \equiv (-n)(n+1)(n+2) \pmod{6}$. But given any three successive integers, there is at least one which is a multiple of 3 and at least one even number. Hence $n(n+1)(n+2) \mid 6$ so $(-n)(n+1)(n+2) \mid 6$ also.
- 5. (5+5=10 marks) We first divide b(x) into a(x), then divide the remainder into b(x), and so on, until we get a remainder of 0.

so $a(x) = 2b(x) - 5x^2 + 14x + 3$, and then

$$-5x^{2} + 14x + 3 \xrightarrow{\left(\begin{array}{ccc} \frac{-1}{5}x & -\frac{14}{25} \\ \end{array}\right) x^{3}} & -7x & -6 \\ \frac{x^{3} & -\frac{14}{5}x & -\frac{3}{5}x \\ \frac{-\frac{14}{5}x^{2} & -\frac{32}{5}x & -6 \\ \frac{14}{5}x^{2} & \frac{-\frac{14^{2}}{25}x & -\frac{42}{25} \\ \frac{-\frac{14^{2}}{5}x & -3\frac{36}{25} \end{array}}{3\frac{25}x & -3\frac{36}{25}}$$

But now it is easy to see x - 3 is a factor of $-5x^2 + 14x + 3$ since $-5 \cdot 9 + 14 \cdot 3 + 3 = 0$.

Hence factorizing $-5x^2 + 14x + 3 = -(x - 3)(5x + 1)$.

Note that for any $a(x), c(x) \in \mathbb{R}[x]$, and $k \in \mathbb{R} \setminus \{0\}$, $c(x) \mid a(x)$ if and only if $kc(x) \mid a(x)$. So, when we are applying the Euclidean Algorithm we may multiply or divide by constants to make the numbers nicer to deal with.

Now we have

n	x	y	
a	1	0	r_1
b	0	1	r_2
\mathbf{c}	1	-2	$r_3 = r_1 - 2r_2$
d	$\frac{1}{5}x + \frac{14}{25}$	$1 - 2(\frac{1}{5}x + \frac{14}{25})$	$r_4 = r_2 - \left(\frac{1}{5}x + \frac{14}{25}\right)r_3$
0	?	?	$r_5 = r_3 + \frac{25}{36}(5x+1)r_4$

Multiplying through by 25 to simplify the calculation we find that $(5x + 14)(2x^3 - 5x^2 - 9) - (10x + 3)(x^3 - 7x - 6) = 36(x - 3)$ as expected.

6. (6+6=12 marks)

- (a) Suppose e * e = e. Consider any $a \in G$ then (e * e) * a = e * a, so e * (e * a) = e * a, so e * a = a. Similarly a * (e * e) = a * e, so (a * e) * e = a * e, so a * e = a.
- (b) If $\exists a : a * e = a$, then $\forall b \in G$, $b * a^{-1} * a * e = b * a^{-1} * a$ or b * i * e = b * i, or b * e = b. Hence e * e = e and e is the identity by (a).
- 7. (12 marks) We will complete the following Cayley Table for * as follows:
 - (a) $e * c = e \implies c = i$. We can thus fill in the row and column of c accordingly.
 - (b) Now a * e has to equal a or c but there is already a in row 1, so a * e = c and d * e = a.
 - (c) Now a * e = c, so e * a = c.
 - (d) Now in the last row e * d can't be d so e * b = d and e * d = a.
 - (e) Now b * b = b * (e * e) = (b * e) * e = d * e = a
 - (f) Now we can fill in the remaining entries by elimination.

*	a	b	с	d	е
a	d	е	a	b	с
b	е	a	b	c	d
c	a	b	с	d	е
d	b	с	d	е	a
e	c	d	е	a	b

8. (12 marks) Let
$$A = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$ be elements of K .
Then $AB = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix}$, thus $AB \in K$.

Hence, K is closed under matrix multiplication.

Associativity is satisfied for multiplication of all matrices, not only for those in K.

The identity element is $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, since $IA = AI = \begin{pmatrix} 1 & x+0 \\ 0 & 1 \end{pmatrix} = A$ and it is a member of K.

The inverse of $A = \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix}$ is $A^{-1} = \begin{pmatrix} 1 & -x \\ 0 & 0 \end{pmatrix}$, since , since $A^{-1}A = AA^{-1} = \begin{pmatrix} 1 & x - x \\ 0 & 1 \end{pmatrix} = I$. Thus K is a group.