DEPARTMENT OF MATHEMATICS

MATHS 255 Solutions to Assignment 3	Due: 16 Sept 2004
-------------------------------------	-------------------

- 1. (5 marks) Let $f : \mathbb{N} \to A$ be defined by $f(n) = 2 \frac{1}{2^n}$. Then $2 \frac{1}{2^m} = 2 \frac{1}{2^n} \iff \frac{1}{2^m} = \frac{1}{2^n} \iff 2^n = 2^m \iff m = n$. Also for all $y \in A, y = 2 \frac{1}{2^n}, n \in \mathbb{N}$, so f a bijection. Furthermore $m \le n \implies 2^m \le 2^n \implies \frac{1}{2^m} \ge \frac{1}{2^n} \implies 2 \frac{1}{2^m} \le 2 \frac{1}{2^m}$ so this is a po isomorphism.
- **2.** (6 marks) Suppose first that F is not 1-1. We must show that f is not 1-1, so there exist $P, Q \subseteq A, P \neq Q$ with F(P) = F(Q). $P \neq Q \implies (\exists x \in P \setminus Q)) \lor (\exists x \in Q \setminus P)$. Suppose without loss of generality that $x \in P \setminus Q$. Then since $F(P) = F(Q), \exists y \in Q : f(y) = f(x) \in F(p) = F(Q)$. So $\exists y \in Q : f(y) = f(x)$ but $x \neq y$ since $x \in Q^{\mathbb{C}}$ and $y \in Q$. Hence f is not 1-1.

Conversely if f is not 1-1 $\exists x, y : x \neq y$ such that f(x) = f(y). Then $F(\{x\}) = F(\{y\}) = f(x) = f(y)$ but $\{x\} \neq \{y\}$ so F not 1-1.

- **3.** (7 marks) Suppose $g \circ f$ is one-to-one and f is onto. Let $x, y \in B$ with g(x) = g(y). Since f is onto, there exist $a, b \in A$ with f(a) = x and f(b) = y. Then g(f(a)) = g(x) = g(y) = g(f(b)), i.e. $(g \circ f)(a) = (g \circ f)(b)$, so since $g \circ f$ is one-to-one we have a = b, so f(a) = f(b), i.e. x = y.
- **4.** (4+4+7+4+3=22 marks) We use the rules $x \in f^{-1}(T) \iff f(x) \in T, x \in \bigcap_{\alpha \in \Lambda} T_{\alpha} \iff (\forall \alpha \in \Lambda)(x \in T_{\alpha})$ and $x \in \bigcup_{\alpha \in \Lambda} T_{\alpha} \iff (\exists \alpha \in \Lambda)(x \in T_{\alpha}).$
 - (a) $x \in f^{-1}(S_Y^{\mathcal{C}}) \iff f(x) \in (S_Y^{\mathcal{C}}) \iff f(x) \notin S \iff x \notin f^{-1}(S) \iff x \in f^{-1}(S)_X^{\mathcal{C}}.$

 - (c) We have

$$\begin{aligned} x \in f^{-1}(A \setminus \bigcap_{\alpha \in \Lambda} S_{\alpha}) &\iff f(x) \in A \setminus \bigcap_{\alpha \in \Lambda} S_{\alpha} \\ &\iff (f(x) \in A) \land \sim ((\forall \alpha \in \Lambda)(f(x) \in S_{\alpha})) \\ &\iff (f(x) \in A) \land (\exists \alpha \in \Lambda) \sim (f(x) \in S_{\alpha})) \\ &\iff (\exists \alpha \in \Lambda)(f(x) \in A) \land (f(x) \notin S_{\alpha})) \\ &\iff (\exists \alpha \in \Lambda)(x \in f^{-1}A) \land (x \notin f^{-1}S_{\alpha})) \\ &\iff (\exists \alpha \in \Lambda)(x \in f^{-1}A \setminus f^{-1}S_{\alpha}) \\ &\iff (\exists \alpha \in \Lambda)(x \in f^{-1}(A \setminus S_{\alpha})) \\ &\iff x \in \bigcup_{\alpha \in \Lambda} f^{-1}(A \setminus S_{\alpha}) \end{aligned}$$

so $f^{-1}(A \setminus \bigcap_{\alpha \in \Lambda} S_{\alpha}) = \bigcup_{\alpha \in \Lambda} f^{-1}(A \setminus S_{\alpha}).$

- (d) $x \in f(A) \setminus f(B) \implies (x \in f(A)) \land (x \notin f(B))$. Hence x = f(p) for some $p \in A$ but there does not exist $q \in B : x = f(q)$. Hence $p \in A$ but $p \notin B$. so $p \in A \setminus B$ and hence $x = f(p) \in f(A \setminus B)$. Hence $f(A) \setminus f(B) \subseteq f(A \setminus B)$.
- (e) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2$. Then $f(\mathbb{R} \setminus (-\infty, 0)) = f([0, \infty) = [0, \infty)$ but $f(\mathbb{R}) \setminus f(-\infty, 0) = [0, \infty) \setminus (0, \infty) = \{0\}.$

- 5. (4x3=12 marks) There exists such x = b + (-a), as in the notes since then a + x = a + (b + (-a)) = a + ((-a) + b) = (a + (-a)) + b) = 0 + b = b. Moreover x is unique, since if a + y = b then y = 0 + y = (a + (-a)) + y = a + ((-a) + y) = a + (y + (-a)) = (a + y) + (-a) = b + (-a) = x.
 - (a) Let $x \in \mathbb{Z}$. Then we have

$$(-x) + x = x + (-x)$$
 (commutative law)
= 0 (definition of $-x$)

so by definition of -(-x), -(-x) = x.

(b) Let $x \in \mathbb{Z}$. Then we have

$$\begin{aligned} x + (-1) \cdot x &= 1 \cdot x + (-1) \cdot x & (definition of 1) \\ &= x \cdot 1 + x \cdot (-1) & (commutative law) \\ &= x \cdot (1 + (-1)) & (distributive law) \\ &= x \cdot 0 & (definition of -1) \\ &= 0 \cdot x & (commutative law) \\ &= 0. & (proved in lectures) \end{aligned}$$

$$\begin{aligned} x \cdot (y-z) &= x \cdot (y+(-z)) & (\text{definition of "-"}) \\ &= x \cdot y + x \cdot (-z) & (\text{distributive law}) \\ &= x \cdot y + -(x \cdot z) \\ &= x \cdot y - x \cdot z & (\text{definition of "-"}) \end{aligned}$$

Hence, by definition of -x, $-x = (-1) \cdot x$.

6. (3x3=9 marks)

(a) The algorithm gives us

n	x	y	
78	1	0	r_1
72	0	1	r_2
6	1	-1	$r_3 = r_1 - r_2$
0	-12	13	$r_4 = r_3 - 12r_2$

From which we see that gcd(78, 72) = 6 and $6 = 78 \cdot (1) + 72 \cdot (-1)$.

(b) The algorithm gives us

n	x	y	
2944	1	0	r_1
928	0	1	r_2
160	1	-3	$r_3 = r_1 - 3r_2$
128	-5	16	$r_4 = r_2 - 5r_3$
32	6	-19	$r_5 = r_3 - r_4$
0	-29	92	$r_5 = r_3 - 4r_4$

From this we see that $gcd(2944, 928) = 32 = 2944 \cdot (6) + 928 \cdot (-19)$.

(c) The algorithm gives us

n	x	y	
1173	1	0	r_1
957	0	1	r_2
216	1	-1	$r_3 = r_1 - r_2$
93	-4	5	$r_4 = r_2 - 2r_3$
30	9	-11	$r_5 = r_3 - 2r_4$
3	-31	38	$r_5 = r_3 - 3r_4$
0	319	-391	$r_5 = r_3 - 10r_4$

from which we see that gcd(1173, 957) = 3 and $3 = 1173 \cdot (-23) + 957 \cdot 33$.

7. (3 marks) Suppose that $a, b, c, x, y \in \mathbb{Z}$ with $c \mid a$ and $c \mid b$. Then there exist $p, q \in \mathbb{Z}$ with a = cp and b = cq. But then

$$ax + by = (cp)x + (cq)y = c(px + qy),$$

and $(px + qy) \in \mathbb{Z}$, so $c \mid ax + by$ as required.

8. (16 marks)

- (a) Suppose there exist $x, y \in \mathbb{Z}$ with rx + sy = 1. Put $d = \gcd(r, s)$. Then, by the previous question, $d \mid 1$, so d = 1. So r and s are relatively prime.
- (b) Suppose that s and r-s are not relatively prime. Then there is some d > 1 such that $d \mid s$ and $d \mid r-s$. But then, by the previous question, $d \mid s \cdot (1) + (r-s) \cdot 1$, i.e. $d \mid r$. Thus d is a common divisor of r and s, so r and s are not relatively prime. Hence, by contraposition, if r and s are relatively prime then so are s and r-s.
- (c) Let $c \in \mathbb{N}$ and suppose $c = p_1^{\gamma_1} p_2^{\gamma_2} \dots p_t^{\gamma_t}$, where each $\gamma_i \ge 0$. Then

$$\begin{array}{ll} ac=b & \Longleftrightarrow & p_1^{\alpha_1+\gamma_1}p_2^{\alpha_2+\gamma_2}\dots p_t^{\alpha_t+\gamma_t}=p_1^{\beta_1}p_2^{\beta_2}\dots p_t^{\beta_t}\\ & \longleftrightarrow & \alpha_i+\gamma_i=\beta_i & \text{by the uniqueness of the fundamental theorem of arithmetic.} \end{array}$$

Thus $a \mid b \iff \alpha_i \leq \beta_i$. Let $d = p_1^{m_1} p_2^{m_2} \dots p_t^{m_t}$ and $D = \{x \in \mathbb{N} : x \mid a \land x \mid b\}$. Then $m_1 = \min\{\alpha_i, \beta_i\} \leq \alpha_i$, and by the above argument, $d \mid a$. Similarly, $d \mid b$ and $d \in D$. Let $c = p_1^{\eta_1} p_2^{\eta_2} \dots p_t^{\eta_t} \in D$. Then $c \mid a$ and by (a) again, each $\eta_i \leq \alpha_i$. Similarly, each $\eta_i \leq \beta_i$, so that $\eta_i \leq m_i$ and $c \mid d$. In particular, $c \leq d$ and $d = \gcd(a, b)$.

(d) We know from the notes theorem 20 (week 6) that if p is prime and $p \mid a \cdot b$ then $p \mid a$ or $p \mid b$. Hence P(2) is true. So we assume $p \mid m_1 m_2 \cdots m_k$ then $p \mid m_i$ for some i and consider $p \mid m_1 m_2 \cdots m_{k+1}$. Let $a = m_1 m_2 \cdots m_k$ then $p \mid a \lor p \mid m_{k+1}$, so $(\exists i \le k : p \mid m_i) \lor (p \mid m_{k+1})$, so $p \mid m_i$ some $1 \le i \le k+1$. QED.