
Department of Mathematics

MATHS 255 Solutions to Assignment 2 Due: 19 Aug 2004

(Total = 97 marks)

1. (8 marks) Show 12 | n4 − n2. P(1) true 14 − 12 = 0.12 | 0. If P(k) then k4 − k2 = 12p. So
k4 = 12p + k2, then (k + 1)4 − (k + 1)2 = k4 + 4k3 + 6k2 + 4k + 1− (k2 + 2k + 1)

(k + 1)4 − (k + 1)2 = k4 + 4k3 + 6k2 + 4k + 1− (k2 + 2k + 1)
= k4 + 4k3 + 5k2 + 2k

= 12p + k2 + 4k3 + 5k2 + 2k

= 12p + 2k(k2 + 4k2 + 6k + 2)
= 12p + 2k(k + 1)(2k + 3)

Now one of k and k + 1 are even so there is an additional factor of 2 in 2k(k + 1)(2k + 3). In
addition if neither k nor k +1 are factors of 3 then k = 3q +1 (check) and so 2k +1 = k +(k +1) =
3q + 1 + 3q + 2 = 6q + 3 is a multiple of 3. Hence 12 | 2k(k + 1)(2k + 3) and P(k+1) is true. Hence
P(n) is true for all n ∈ N.

2. (7 marks) Show for n ≥ 10 that 2n > n3. P(10) true , i.e. 210 = 1024 > 1000 = 103.
If P(k) true 2k > k3 then 2k+1 = 2.2k > k3 +k3 > k3 +10k2 (Since k ≥ 10) > k3 +3k2 +3k3 +3k2 >
k3 + 3k2 + 3k + 1 = (k + 1)3. Hence P(k+1) is true, and so P(n) is true for all n ≥ 10.

3. (7 marks) Use induction to show that
∑n

i=1(2n−1)2 = 12 +32 + · · ·+(2n−1)2 = n
3 (2n+1)(2n−1).

P(1) true 12 = 1 = 1
3(2 + 1)(2− 1). If P(k) i.e. 12 + 32 + · · ·+ (2k − 1)2 = k

3 (2k + 1)(2k − 1) then∑k+1
i=1 (2k − 1)2 = 12 + 32 + · · · + (2k − 1)2 + (2(k + 1) − 1)2 = k

3 (2k + 1)(2k − 1) + (2k + 1)2 =
(2k+1)(k(2k−1)

3 +2k+1) = (2k+1)2k2+5k+3
3 = k+1

3 (2k+1)(2k+3) = k+1
3 (2((k+1)+1)(2(k+1)−1).

Since this is precisely the sum formula for k +1, P(k+1) is true and hence P(n) is true for all n ∈ N.

4. (18=5+5+4+4 marks) A function f : Q → Q is a flat function if for all m,n ∈ Q, f(m + n) =
f(m) + f(n). Suppose f is a flat function and f(1) = a. Show using induction that:

(a) f(kn) = kf(n) for all k ∈ N, n ∈ Q. P(1) true since f(1.n) = f(n) = 1.f(n). If P(k) i.e.
f(kn) = kf(n) then f((k + 1)n) = f(kn + n) = f(kn) + f(n) = kf(n) + f(n) = (k + 1)f(n), so
P(k+1) true. Hence P(n) true for all n ∈ N.

(b) f(n) = an for all n ∈ N. P(1) f(1)=a true. If P(k) then f(k+1) = f(k)+f(1) = ka+a = (k+1)a,
so P(k+1) true. Hence P(n) true for all n ∈ N.

(c) f(n) = an for all n ∈ Z. f(n) = f(n + 0) = f(n) + f(0), hence f(0) = 0 = 0.n. Now
f(−n) + f(n) = f(−n + n) = f(0) = 0, so f(−n) = −f(n) = (−n)a.

(d) f(n) = an for all n ∈ Q. From (a) ma = f(m) = f(nm
n ) = nf(m

n ), so f(m
n ) = m

n a. Now
f(−m

n ) + f(m
n ) = f(0) = 0, so f(−m

n ) = m
n a.

5. (12=4x3 marks)

(a) Note that ρ = {(x, y) ∈ A × A : xy = 0} = ∅ since both x and y are positive. So ρ is
symmetric, antisymmetric and transitive. But ρ is not reflexive because (1, 1) 6∈ ρ.
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(b) Note ρ = {(0, 4), (4, 0), (1, 3), (3, 1), (2, 2)}. So ρ is not reflexive because (0, 0) 6∈ ρ.
Symmetric: (x, y) ∈ ρ ⇐⇒ x + y = 4 ⇐⇒ y + x = 4 ⇐⇒ (y, x) ∈ ρ;
Not antisymmetric: 0ρ4 ∧ 4ρ0 but 4 6= 0.
Not transitive: 0ρ4 ∧ 4ρ0 but (0, 0) 6∈ ρ.

(c) Not reflexive: (4, 4) 6∈ ρ.
Not symmetric: (2, 1) ∈ ρ but (1, 2) 6∈ ρ.
Not antisymmetric: 2ρ4 ∧ 4ρ2 but 4 6= 2.
Not Transitive: 4ρ2 ∧ 2ρ1 but (4, 1) 6∈ ρ.

(d) Reflexive: for all x ∈ D, x− x = 0 ∈ Z.
Symmetric: (x, y) ∈ ρ ⇐⇒ x− y ∈ Z ⇐⇒ y − x = −(x− y) ∈ Z ⇐⇒ (y, x) ∈ ρ.
Not antisymmetric: 1ρ2 ∧ 2ρ1 but 1 6= 2.
Transitive: xρy∧yρz ⇐⇒ x−y ∈ Z and y− z ∈ Z, so x− z = (x−y)+ (y− z) ∈ Z and xρy.

6. (10=6+4 marks) To show that � is a partial order we must show that it is reflexive, antisymmetric
and transitive.

Reflexive: Let x ∈ N. Then x = x so x � x.

Antisymmetric: Let x, y ∈ N with x � y and y � x. Suppose, for a contradiction, that x 6= y.
Then we must have 2x ≤ y and 2y ≤ x. We have x ≤ 2x ≤ y ≤ 2y ≤ x, so x = y, a
contradiction. So we must have x = y.

Transitive: Let x, y ∈ N with x � y and y � z. If x = y then (since y � z) we have x � z, and
similarly if y = z then x � y = z so x � z. So suppose that 2x ≤ y and 2y ≤ z. Since y ≤ 2y
we have 2x ≤ y ≤ 2y ≤ z, so 2x ≤ 4x ≤ z, so x � z, as required.

To show that � is not a total order, we exhibit a counterexample: we have 2 6= 3 and 2.2 � 3 and
2.3 � 2 so 2 � 3 and 3 � 2.

7. (16=4x4 marks)

(a) We have the lattice diagrams
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(b) 1 minimal and a least element 10,11, 15, 13, 17, 14, 18, 12, 16 all maximal none greatest. 18
greatest and maximal and 1 least and minimal in the second lattice.

(c) The least upper bound for {1, 2, 3} in B is 6.
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(d) There are a number of choices. One would be {2, 3, 5}: any upper bound for this set would
have to be divisible by 2, 3 and 5, so would have to be at least 30. Another choice would be to
take any two maximal elements, say {12, 18}.

8. (10=5+5 marks) Since S has a lower bound, b0 say, we have b0 ∈ LS so LS 6= ∅. Since S 6= ∅,
there is some s0 ∈ S. Now, for every b ∈ LS we have b � s for all s ∈ S, and in particular b � s0.
So s0 is an upper bound for LS , so LS has at least one upper bound.

Let g = supLS . We must show that g is a lower bound for S, i.e. that g � s for all s ∈ S. So let
s ∈ S. As above, for any b ∈ B we must have b � s. Thus s is an upper bound for LS . Since g
is the least upper bound for LS , we must have g � s. Since this holds for all s ∈ S, g is a lower
bound for S, as required.

Finally, we must show that g is a greatest lower bound. So let b be a lower bound for S. Then
b ∈ LS , so (since g is an upper bound for LS) b � g, as required.

9. (9=5+4 marks) We must show that ρ is reflexive, antisymmetric and transitive.

Reflexive: Let (x, y) ∈ R2. Then | x | + | y |=| x | + | y |, so (x, y) ρ (x, y).

Symmetric: Let (x, y), (u, v) ∈ R2 with (x, y) ρ (u, v). Then | x | + | y |=| u | + | v |, so
| u | + | v |=| x | + | y |, so (u, v) ρ (x, y).

Transitive: Let (x, y), (u, v), (z, w) ∈ R2 with (x, y) ρ (u, v) and (u, v) ρ (z, w). Then | x | + | y |=|
u | + | v | and | u | + | v |=| z | + | w |, so | x | + | y |=| z | + | w |, i.e. (x, y) ρ (z, w).

Notice that (x, y) ρ (u, v) iff (x, y) and (u, v) are on the same straight line segment i.e. x + y =
u + v = c in the first quadrant, or a reflection of such points in either of the axes (to allow for
| x | + | y |= c). Thus T(x,y) is the square diamond centred at the origin of diameter 2c. In the
special case where (x, y) = (0, 0) we have T(0,0) = {(0, 0)}.
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