DEPARTMENT OF MATHEMATICS
MATHS 255 Solutions to Assignment 2 Due: 19 Aug 2004

(Total = 97 marks)

1. (8 marks) Show 12 | n* — n% P(1) true 1* — 12 = 0.12 | 0. If P(k) then k* — k? = 12p. So
k* =12p + k2, then (k+ 1)* — (k+1)?2 = k* + 4k3 + 6k> + 4k + 1 — (K> + 2k + 1)

(k+D*—(k+1)? = k*+4k3 4+ 6K +4k+1 — (K> + 2k + 1)
k* + 4Kk® + 5k* + 2k
= 12p+ K% 4+ 4k3 + 5k + 2k
= 12p+ 2k(k* + 4k* + 6k + 2)
= 12p+ 2k(k + 1)(2k + 3)

Now one of k and k 4+ 1 are even so there is an additional factor of 2 in 2k(k + 1)(2k + 3). In
addition if neither k nor k + 1 are factors of 3 then k = 3¢+ 1 (check) and so 2k+1=Fk+ (k+1) =
3¢+ 1+3¢+2=06qg+ 3 is a multiple of 3. Hence 12 | 2k(k + 1)(2k + 3) and P(k+1) is true. Hence
P(n) is true for all n € N.

2. (7 marks) Show for n > 10 that 2" > n3. P(10) true , i.e. 2% = 1024 > 1000 = 103.
If P(k) true 2% > k3 then 251 = 2.2% > k3 + k3 > k3 4+ 10k2 (Since k > 10) > k3 +3k% + 33 + 3% >
k3 +3k?> + 3k +1 = (k+1)3. Hence P(k+1) is true, and so P(n) is true for all n > 10.

3. (7 marks) Use induction to show that > (2n—1)? = 124+3% 4. -+ (2n—1)* = 2(2n+1)(2n—1).
P(1) true 12 =1=1(2+1)(2—1). If P(k) ie. 12432+ + (2k — 1)2 = 5(2k + 1)(2k — 1) then
SRk -1)2 =124 324+ (2k— 12+ 2+ 1) - 1)2 = E@k+1)(2k — 1) + (2k +1)? =
(2k+1) (R 9 4 1) = (k4 1) ZEE0k43 — kL (9% 1 1)(2k+3) = B (2((k+1)+1)(2(k+1)—1)
Since this is premsely the sum formula for k+1, P(k+1) is true and hence P(n) is true for all n € N.

4. (18=5+5+4+4 marks) A function f: Q — Q is a flat function if for all m,n € Q, f(m +n) =
f(m) + f(n). Suppose f is a flat function and f(1) = a. Show using induction that:

(a) {( n) = 1.f(n). If P(k) i.e.

n) = kf(n) for all k € N,n € Q. P(1) true since f(1.n)
— kf(n) + F(n) = (k+ 1) f(n), so

(k (1)
(kn) = kf(n) then f((k+1)n) = f(kn+n) = f(kn) + f(n)
(k+1) true. Hence P(n) true for all n € N.
(n) =anforalln € N. P(1) f(1)=a true. If P(k) then f(k+1) = f(k)+f(1) = ka+a = (k+1)a,

f =
f k
P

f

so P(k+1) true. Hence P(n) true for all n € N.

f

f

f

f

(b)

(c) f(n) = an for all n € Z. f(n) = f(n+0) = f(n) + f(0), hence f(0) = 0 = 0.n. Now
(=n) + f(n) = f(=n+n) = f(0) =0, s0 f(—n) = —f(n) = (—n)a.
(d) E

n) = an for all n € Q. From (a) ma = f(m) = f(n'?) = nf(™), so f(*) = "a. Now

=) 1 f(2) = £(0) = 0, 0 f(2) = Za.
5. (12=4x3 marks)

(a) Note that p = {(z,y) € A x A : 2y = 0} = 0 since both = and y are positive. So p is
symmetric, antisymmetric and transitive. But p is not reflexive because (1,1) & p.
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(b) Note p = {(0,4),(4,0),(1,3),(3,1),(2,2)}. So p is not reflexive because (0,0) & p.
Symmetric: (z,y) €p <= z+y=4 <= y+zrx=4 < (y,z) € p;
Not antisymmetric: 0p4 A 4p0 but 4 # 0.
Not transitive: 0p4 A 4p0 but (0,0) & p.
(c) Not reflexive: (4,4) & p.
Not symmetric: (2,1) € p but (1,2) & p.
Not antisymmetric: 2p4 A 4p2 but 4 # 2.
Not Transitive: 4p2 A 2p1 but (4,1) € p.
(d) Reflexive: forallz € D,z —xz =0 € Z.
Symmetric: (z,y) €Ep <= z—y €L < y—x=—(r—y) €Z < (y,x) € p.
Not antisymmetric: 1p2 A 2pl but 1 # 2.
Transitive: zpyAypz < z—y€Zandy—z€Z,sox—z= (x—y)+(y—z) € Z and zpy.

6. (10=6+4 marks) To show that < is a partial order we must show that it is reflexive, antisymmetric
and transitive.

Reflexive: Let x € N. Then z = z so xz < .

Antisymmetric: Let x,y € N with < y and y < . Suppose, for a contradiction, that = # y.
Then we must have 22 < y and 2y < z. We have z < 22 <y <2y < z,s0x =y, a
contradiction. So we must have x = y.

Transitive: Let z,y € N with <y and y < z. If x = y then (since y < z) we have z < z, and
similarly if y = 2z then x <y = 2z so x < 2. So suppose that 2z < y and 2y < z. Since y < 2y
we have 2x <y < 2y < 2,80 2x < 4z < z, s0 x = z, as required.

To show that =< is not a total order, we exhibit a counterexample: we have 2 # 3 and 2.2 £ 3 and
23¢£2s024A3and 3 £2.

7. (16=4x4 marks)

(a) We have the lattice diagrams

16

18

and 1

(b) 1 minimal and a least element 10,11, 15, 13, 17, 14, 18, 12, 16 all maximal none greatest. 18
greatest and maximal and 1 least and minimal in the second lattice.

(c) The least upper bound for {1,2,3} in B is 6.
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(d) There are a number of choices. One would be {2,3,5}: any upper bound for this set would
have to be divisible by 2, 3 and 5, so would have to be at least 30. Another choice would be to
take any two maximal elements, say {12, 18}.

8. (10=5+5 marks) Since S has a lower bound, by say, we have by € Lg so Lg # ). Since S # 0,
there is some sy € S. Now, for every b € Lg we have b < s for all s € S, and in particular b < sq.
So sg is an upper bound for Lg, so Lg has at least one upper bound.

Let g = sup Lg. We must show that ¢ is a lower bound for S, i.e. that g < s for all s € S. So let
s € §. As above, for any b € B we must have b < s. Thus s is an upper bound for Lg. Since g
is the least upper bound for Lg, we must have g = s. Since this holds for all s € S, g is a lower
bound for S, as required.

Finally, we must show that g is a greatest lower bound. So let b be a lower bound for S. Then
b € Lg, so (since g is an upper bound for Lg) b < g, as required.

9. (9=544 marks) We must show that p is reflexive, antisymmetric and transitive.

Reflexive: Let (x,y) € R%. Then |z |+ |y |=| 2|+ |y |, so (z,y) p (z,y).

Symmetric: Let (x,%), (u,v) € R? with (z,9) p (w,v). Then |z | + |y |=| v | + | v |, s0
lul+Tvl=lz]+ ]yl so (u,0)p(2,y).

Transitive: Let (z,v), (u,v), (z,w) € R? with (z,y) p (u,v) and (u,v) p (z,w). Then | x| + |y |=|
wltlvland [ul+[v[=lz[+[wl]solz|[+][y[=|z]+][w] ie (2,9)p(zw).

Notice that (x,y) p (u,v) iff (z,y) and (u,v) are on the same straight line segment i.e. =z +y =
u + v = c in the first quadrant, or a reflection of such points in either of the axes (to allow for
| x| + |y |=¢). Thus T, is the square diamond centred at the origin of diameter 2c. In the
special case where (z,y) = (0,0) we have T{o ) = {(0,0)}.
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