MATHS 255

(Total = 97 marks)

1. (8 marks) Show 12 | $n^4 - n^2$. P(1) true $1^4 - 1^2 = 0.12 | 0$. If P(k) then $k^4 - k^2 = 12p$. So $k^4 = 12p + k^2$, then $(k+1)^4 - (k+1)^2 = k^4 + 4k^3 + 6k^2 + 4k + 1 - (k^2 + 2k + 1)$

$$(k+1)^{4} - (k+1)^{2} = k^{4} + 4k^{3} + 6k^{2} + 4k + 1 - (k^{2} + 2k + 1)$$

$$= k^{4} + 4k^{3} + 5k^{2} + 2k$$

$$= 12p + k^{2} + 4k^{3} + 5k^{2} + 2k$$

$$= 12p + 2k(k^{2} + 4k^{2} + 6k + 2)$$

$$= 12p + 2k(k+1)(2k+3)$$

Now one of k and k + 1 are even so there is an additional factor of 2 in 2k(k + 1)(2k + 3). In addition if neither k nor k + 1 are factors of 3 then k = 3q + 1 (check) and so 2k + 1 = k + (k + 1) = 3q + 1 + 3q + 2 = 6q + 3 is a multiple of 3. Hence $12 \mid 2k(k + 1)(2k + 3)$ and P(k+1) is true. Hence P(n) is true for all $n \in \mathbb{N}$.

- 2. (7 marks) Show for $n \ge 10$ that $2^n > n^3$. P(10) true, i.e. $2^{10} = 1024 > 1000 = 10^3$. If P(k) true $2^k > k^3$ then $2^{k+1} = 2.2^k > k^3 + k^3 > k^3 + 10k^2$ (Since $k \ge 10$) $> k^3 + 3k^2 + 3k^3 + 3k^2 > k^3 + 3k^2 + 3k + 1 = (k+1)^3$. Hence P(k+1) is true, and so P(n) is true for all $n \ge 10$.
- **3.** (7 marks) Use induction to show that $\sum_{i=1}^{n} (2n-1)^2 = 1^2 + 3^2 + \dots + (2n-1)^2 = \frac{n}{3}(2n+1)(2n-1)$. P(1) true $1^2 = 1 = \frac{1}{3}(2+1)(2-1)$. If P(k) i.e. $1^2 + 3^2 + \dots + (2k-1)^2 = \frac{k}{3}(2k+1)(2k-1)$ then $\sum_{i=1}^{k+1} (2k-1)^2 = 1^2 + 3^2 + \dots + (2k-1)^2 + (2(k+1)-1)^2 = \frac{k}{3}(2k+1)(2k-1) + (2k+1)^2 = (2k+1)(\frac{k(2k-1)}{3} + 2k+1) = (2k+1)\frac{2k^2+5k+3}{3} = \frac{k+1}{3}(2k+1)(2k+3) = \frac{k+1}{3}(2((k+1)+1)(2(k+1)-1))$. Since this is precisely the sum formula for k+1, P(k+1) is true and hence P(n) is true for all $n \in \mathbb{N}$.
- 4. (18=5+5+4+4 marks) A function $f : \mathbb{Q} \to \mathbb{Q}$ is a *flat* function if for all $m, n \in \mathbb{Q}$, f(m+n) = f(m) + f(n). Suppose f is a flat function and f(1) = a. Show using induction that:
 - (a) f(kn) = kf(n) for all $k \in \mathbb{N}, n \in \mathbb{Q}$. P(1) true since f(1.n) = f(n) = 1.f(n). If P(k) i.e. f(kn) = kf(n) then f((k+1)n) = f(kn+n) = f(kn) + f(n) = kf(n) + f(n) = (k+1)f(n), so P(k+1) true. Hence P(n) true for all $n \in \mathbb{N}$.
 - (b) f(n) = an for all $n \in \mathbb{N}$. P(1) f(1)=a true. If P(k) then f(k+1) = f(k)+f(1) = ka+a = (k+1)a, so P(k+1) true. Hence P(n) true for all $n \in \mathbb{N}$.
 - (c) f(n) = an for all $n \in \mathbb{Z}$. f(n) = f(n+0) = f(n) + f(0), hence f(0) = 0 = 0.n. Now f(-n) + f(n) = f(-n+n) = f(0) = 0, so f(-n) = -f(n) = (-n)a.
 - (d) f(n) = an for all $n \in \mathbb{Q}$. From (a) $ma = f(m) = f(n\frac{m}{n}) = nf(\frac{m}{n})$, so $f(\frac{m}{n}) = \frac{m}{n}a$. Now $f(\frac{-m}{n}) + f(\frac{m}{n}) = f(0) = 0$, so $f(\frac{-m}{n}) = \frac{m}{n}a$.

5. (12=4x3 marks)

(a) Note that $\rho = \{(x, y) \in A \times A : xy = 0\} = \emptyset$ since both x and y are positive. So ρ is symmetric, antisymmetric and transitive. But ρ is not reflexive because $(1, 1) \notin \rho$.

- (b) Note ρ = {(0,4), (4,0), (1,3), (3,1), (2,2)}. So ρ is not reflexive because (0,0) ∉ ρ.
 Symmetric: (x, y) ∈ ρ ⇔ x + y = 4 ⇔ y + x = 4 ⇔ (y, x) ∈ ρ;
 Not antisymmetric: 0ρ4 ∧ 4ρ0 but 4 ≠ 0.
 Not transitive: 0ρ4 ∧ 4ρ0 but (0,0) ∉ ρ.
- (c) Not reflexive: $(4, 4) \notin \rho$. Not symmetric: $(2, 1) \in \rho$ but $(1, 2) \notin \rho$. Not antisymmetric: $2\rho 4 \wedge 4\rho 2$ but $4 \neq 2$. Not Transitive: $4\rho 2 \wedge 2\rho 1$ but $(4, 1) \notin \rho$.
- (d) **Reflexive**: for all $x \in D$, $x x = 0 \in \mathbb{Z}$. **Symmetric**: $(x, y) \in \rho \iff x - y \in \mathbb{Z} \iff y - x = -(x - y) \in \mathbb{Z} \iff (y, x) \in \rho$. **Not antisymmetric**: $1\rho 2 \wedge 2\rho 1$ but $1 \neq 2$. **Transitive**: $x\rho y \wedge y\rho z \iff x - y \in \mathbb{Z}$ and $y - z \in \mathbb{Z}$, so $x - z = (x - y) + (y - z) \in \mathbb{Z}$ and $x\rho y$.
- 6. (10=6+4 marks) To show that \leq is a partial order we must show that it is reflexive, antisymmetric and transitive.

Reflexive: Let $x \in \mathbb{N}$. Then x = x so $x \preceq x$.

- **Antisymmetric:** Let $x, y \in \mathbb{N}$ with $x \leq y$ and $y \leq x$. Suppose, for a contradiction, that $x \neq y$. Then we must have $2x \leq y$ and $2y \leq x$. We have $x \leq 2x \leq y \leq 2y \leq x$, so x = y, a contradiction. So we must have x = y.
- **Transitive:** Let $x, y \in \mathbb{N}$ with $x \leq y$ and $y \leq z$. If x = y then (since $y \leq z$) we have $x \leq z$, and similarly if y = z then $x \leq y = z$ so $x \leq z$. So suppose that $2x \leq y$ and $2y \leq z$. Since $y \leq 2y$ we have $2x \leq y \leq 2y \leq z$, so $2x \leq 4x \leq z$, so $x \leq z$, as required.

To show that \leq is not a total order, we exhibit a counterexample: we have $2 \neq 3$ and $2.2 \nleq 3$ and $2.3 \nleq 2$ so $2 \nleq 3$ and $3 \nleq 2$.

7. (16=4x4 marks)

(a) We have the lattice diagrams

- (b) 1 minimal and a least element 10,11, 15, 13, 17, 14, 18, 12, 16 all maximal none greatest. 18 greatest and maximal and 1 least and minimal in the second lattice.
- (c) The least upper bound for $\{1, 2, 3\}$ in B is 6.

- (d) There are a number of choices. One would be $\{2,3,5\}$: any upper bound for this set would have to be divisible by 2, 3 and 5, so would have to be at least 30. Another choice would be to take any two maximal elements, say $\{12, 18\}$.
- 8. (10=5+5 marks) Since S has a lower bound, b_0 say, we have $b_0 \in L_S$ so $L_S \neq \emptyset$. Since $S \neq \emptyset$, there is some $s_0 \in S$. Now, for every $b \in L_S$ we have $b \preceq s$ for all $s \in S$, and in particular $b \preceq s_0$. So s_0 is an upper bound for L_S , so L_S has at least one upper bound.

Let $g = \sup L_S$. We must show that g is a lower bound for S, i.e. that $g \leq s$ for all $s \in S$. So let $s \in S$. As above, for any $b \in B$ we must have $b \leq s$. Thus s is an upper bound for L_S . Since g is the **least** upper bound for L_S , we must have $g \leq s$. Since this holds for all $s \in S$, g is a lower bound for S, as required.

Finally, we must show that g is a **greatest** lower bound. So let b be a lower bound for S. Then $b \in L_S$, so (since g is an upper bound for L_S) $b \leq g$, as required.

9. (9=5+4 marks) We must show that ρ is reflexive, antisymmetric and transitive.

Reflexive: Let $(x, y) \in \mathbb{R}^2$. Then |x| + |y| = |x| + |y|, so $(x, y) \rho(x, y)$.

Symmetric: Let $(x, y), (u, v) \in \mathbb{R}^2$ with $(x, y) \rho (u, v)$. Then |x| + |y| = |u| + |v|, so |u| + |v| = |x| + |y|, so $(u, v) \rho (x, y)$.

Transitive: Let $(x, y), (u, v), (z, w) \in \mathbb{R}^2$ with $(x, y) \rho(u, v)$ and $(u, v) \rho(z, w)$. Then |x| + |y| = |u| + |v| and |u| + |v| = |z| + |w|, so |x| + |y| = |z| + |w|, i.e. $(x, y) \rho(z, w)$.

Notice that $(x, y) \rho(u, v)$ iff (x, y) and (u, v) are on the same straight line segment i.e. x + y = u + v = c in the first quadrant, or a reflection of such points in either of the axes (to allow for |x| + |y| = c). Thus $T_{(x,y)}$ is the square diamond centred at the origin of diameter 2c. In the special case where (x, y) = (0, 0) we have $T_{(0,0)} = \{(0, 0)\}$.