MATHS 255 Solutions to Assignment 2 Due: 19 Aug 2004

 $(Total = 97 marks)$

1. (8 marks) Show 12 | $n^4 - n^2$. P(1) true $1^4 - 1^2 = 0.12$ | 0. If P(k) then $k^4 - k^2 = 12p$. So $k^4 = 12p + k^2$, then $(k+1)^4 - (k+1)^2 = k^4 + 4k^3 + 6k^2 + 4k + 1 - (k^2 + 2k + 1)$

$$
(k+1)^4 - (k+1)^2 = k^4 + 4k^3 + 6k^2 + 4k + 1 - (k^2 + 2k + 1)
$$

= $k^4 + 4k^3 + 5k^2 + 2k$
= $12p + k^2 + 4k^3 + 5k^2 + 2k$
= $12p + 2k(k^2 + 4k^2 + 6k + 2)$
= $12p + 2k(k+1)(2k+3)$

Now one of k and $k + 1$ are even so there is an additional factor of 2 in $2k(k + 1)(2k + 3)$. In addition if neither k nor $k+1$ are factors of 3 then $k = 3q+1$ (check) and so $2k+1 = k+(k+1)$ $3q + 1 + 3q + 2 = 6q + 3$ is a multiple of 3. Hence $12 | 2k(k+1)(2k+3)$ and $P(k+1)$ is true. Hence $P(n)$ is true for all $n \in \mathbb{N}$.

- **2.** (7 marks) Show for $n \ge 10$ that $2^n > n^3$. P(10) true, i.e. $2^{10} = 1024 > 1000 = 10^3$. If P(k) true $2^k > k^3$ then $2^{k+1} = 2 \cdot 2^k > k^3 + k^3 > k^3 + 10k^2$ (Since $k \ge 10 > k^3 + 3k^2 + 3k^3 + 3k^2 >$ $k^3 + 3k^2 + 3k + 1 = (k+1)^3$. Hence P(k+1) is true, and so P(n) is true for all $n \ge 10$.
- **3.** (**7 marks**) Use induction to show that $\sum_{i=1}^{n} (2n-1)^2 = 1^2 + 3^2 + \cdots + (2n-1)^2 = \frac{n}{3}(2n+1)(2n-1)$. P(1) true $1^2 = 1 = \frac{1}{3}(2+1)(2-1)$. If P(k) i.e. $1^2 + 3^2 + \cdots + (2k-1)^2 = \frac{k}{3}(2k+1)$ $\frac{k}{3}(2k+1)(2k-1)$ then $\sum_{i=1}^{k+1} (2k-1)^2 = 1^2 + 3^2 + \cdots + (2k-1)^2 + (2(k+1)-1)^2 = \frac{k}{3}$ $\frac{k}{3}(2k+1)(2k-1) + (2k+1)^2 =$ $(2k+1)(\frac{k(2k-1)}{3}+2k+1) = (2k+1)\frac{2k^2+5k+3}{3} = \frac{k+1}{3}$ $\frac{+1}{3}(2k+1)(2k+3) = \frac{k+1}{3}(2((k+1)+1)(2(k+1)-1).$ Since this is precisely the sum formula for $k+1$, $P(k+1)$ is true and hence $P(n)$ is true for all $n \in \mathbb{N}$.
- 4. (18=5+5+4+4 marks) A function $f: \mathbb{Q} \to \mathbb{Q}$ is a *flat* function if for all $m, n \in \mathbb{Q}$, $f(m+n)$ $f(m) + f(n)$. Suppose f is a flat function and $f(1) = a$. Show using induction that:
	- (a) $f(kn) = kf(n)$ for all $k \in \mathbb{N}, n \in \mathbb{Q}$. P(1) true since $f(1.n) = f(n) = 1.f(n)$. If P(k) i.e. $f(kn) = kf(n)$ then $f((k+1)n) = f(kn+n) = f(kn) + f(n) = kf(n) + f(n) = (k+1)f(n)$, so $P(k+1)$ true. Hence $P(n)$ true for all $n \in \mathbb{N}$.
	- (b) $f(n) = an$ for all $n \in \mathbb{N}$. P(1) f(1)=a true. If P(k) then $f(k+1) = f(k)+f(1) = ka+a = (k+1)a$, so $P(k+1)$ true. Hence $P(n)$ true for all $n \in \mathbb{N}$.
	- (c) $f(n) = an$ for all $n \in \mathbb{Z}$. $f(n) = f(n+0) = f(n) + f(0)$, hence $f(0) = 0 = 0 \ldots$ Now $f(-n) + f(n) = f(-n + n) = f(0) = 0$, so $f(-n) = -f(n) = (-n)a$.
	- (d) $f(n) = an$ for all $n \in \mathbb{Q}$. From (a) $ma = f(m) = f(n\frac{m}{n})$ $\frac{m}{n}$) = $nf(\frac{m}{n})$ $\frac{m}{n}$), so $f(\frac{m}{n})$ $\frac{m}{n}$) = $\frac{m}{n}a$. Now $f\left(\frac{-m}{n}\right)$ $\frac{(-m)}{n}$) + $f(\frac{m}{n})$ $\binom{m}{n} = f(0) = 0$, so $f(\frac{-m}{n})$ $\frac{(-m)}{n}$) = $\frac{m}{n}a$.

5. $(12=4x3 \text{ marks})$

(a) Note that $\rho = \{(x, y) \in A \times A : xy = 0\} = \emptyset$ since both x and y are positive. So ρ is symmetric, antisymmetric and transitive. But ρ is not reflexive because $(1,1) \notin \rho$.

- (b) Note $\rho = \{(0, 4), (4, 0), (1, 3), (3, 1), (2, 2)\}\.$ So ρ is not reflexive because $(0, 0) \notin \rho$. Symmetric: $(x, y) \in \rho \iff x + y = 4 \iff y + x = 4 \iff (y, x) \in \rho;$ Not antisymmetric: $0 \rho 4 \wedge 4 \rho 0$ but $4 \neq 0$. Not transitive: $0 \rho_4 \wedge 4 \rho_0$ but $(0, 0) \notin \rho$.
- (c) Not reflexive: $(4, 4) \notin \rho$. Not symmetric: $(2, 1) \in \rho$ but $(1, 2) \notin \rho$. Not antisymmetric: $2\rho 4 \wedge 4\rho 2$ but $4 \neq 2$. Not Transitive: $4\rho 2 \wedge 2\rho 1$ but $(4, 1) \notin \rho$.
- (d) **Reflexive**: for all $x \in D$, $x x = 0 \in \mathbb{Z}$. Symmetric: $(x, y) \in \rho \iff x - y \in \mathbb{Z} \iff y - x = -(x - y) \in \mathbb{Z} \iff (y, x) \in \rho$. Not antisymmetric: $1\rho 2 \wedge 2\rho 1$ but $1 \neq 2$. **Transitive:** $x \rho y \wedge y \rho z \iff x - y \in \mathbb{Z}$ and $y - z \in \mathbb{Z}$, so $x - z = (x - y) + (y - z) \in \mathbb{Z}$ and $x \rho y$.
- 6. (10=6+4 marks) To show that \preceq is a partial order we must show that it is reflexive, antisymmetric and transitive.

Reflexive: Let $x \in \mathbb{N}$. Then $x = x$ so $x \preceq x$.

- Antisymmetric: Let $x, y \in \mathbb{N}$ with $x \preceq y$ and $y \preceq x$. Suppose, for a contradiction, that $x \neq y$. Then we must have $2x \le y$ and $2y \le x$. We have $x \le 2x \le y \le 2y \le x$, so $x = y$, a contradiction. So we must have $x = y$.
- **Transitive:** Let $x, y \in \mathbb{N}$ with $x \preceq y$ and $y \preceq z$. If $x = y$ then (since $y \preceq z$) we have $x \preceq z$, and similarly if $y = z$ then $x \preceq y = z$ so $x \preceq z$. So suppose that $2x \leq y$ and $2y \leq z$. Since $y \leq 2y$ we have $2x \le y \le 2y \le z$, so $2x \le 4x \le z$, so $x \le z$, as required.

To show that \leq is not a total order, we exhibit a counterexample: we have $2 \neq 3$ and $2.2 \leq 3$ and $2.3 \nleq 2$ so $2 \nleq 3$ and $3 \nleq 2$.

7. $(16=4x4 \text{ marks})$

(a) We have the lattice diagrams

- (b) 1 minimal and a least element 10,11, 15, 13, 17, 14, 18, 12, 16 all maximal none greatest. 18 greatest and maximal and 1 least and minimal in the second lattice.
- (c) The least upper bound for $\{1, 2, 3\}$ in B is 6.
- (d) There are a number of choices. One would be {2, 3, 5}: any upper bound for this set would have to be divisible by 2, 3 and 5, so would have to be at least 30. Another choice would be to take any two maximal elements, say {12, 18}.
- 8. (10=5+5 marks) Since S has a lower bound, b_0 say, we have $b_0 \in L_S$ so $L_S \neq \emptyset$. Since $S \neq \emptyset$, there is some $s_0 \in S$. Now, for every $b \in L_S$ we have $b \preceq s$ for all $s \in S$, and in particular $b \preceq s_0$. So s_0 is an upper bound for L_S , so L_S has at least one upper bound.

Let $g = \sup L_S$. We must show that g is a lower bound for S, i.e. that $g \preceq s$ for all $s \in S$. So let $s \in S$. As above, for any $b \in B$ we must have $b \preceq s$. Thus s is an upper bound for L_S . Since q is the least upper bound for L_S , we must have $g \preceq s$. Since this holds for all $s \in S$, g is a lower bound for S, as required.

Finally, we must show that q is a **greatest** lower bound. So let b be a lower bound for S. Then $b \in L_S$, so (since g is an upper bound for L_S) $b \preceq g$, as required.

9. (9=5+4 marks) We must show that ρ is reflexive, antisymmetric and transitive.

Reflexive: Let $(x, y) \in \mathbb{R}^2$. Then $|x| + |y| = |x| + |y|$, so $(x, y) \rho(x, y)$.

Symmetric: Let $(x, y), (u, v) \in \mathbb{R}^2$ with $(x, y) \rho(u, v)$. Then $|x| + |y| = |u| + |v|$, so $|u| + |v| = |x| + |y|$, so $(u, v) \rho(x, y)$.

Transitive: Let $(x, y), (u, v), (z, w) \in \mathbb{R}^2$ with $(x, y) \rho(u, v)$ and $(u, v) \rho(z, w)$. Then $|x| + |y| = |w|$ $u | + | v |$ and $| u | + | v | = | z | + | w |$, so $| x | + | y | = | z | + | w |$, i.e. $(x, y) \rho (z, w)$.

Notice that $(x, y) \rho(u, v)$ iff (x, y) and (u, v) are on the same straight line segment i.e. $x + y =$ $u + v = c$ in the first quadrant, or a reflection of such points in either of the axes (to allow for $|x| + |y| = c$. Thus $T(x,y)$ is the square diamond centred at the origin of diameter 2c. In the special case where $(x, y) = (0, 0)$ we have $T_{(0, 0)} = \{(0, 0)\}.$