MATHS 255

(Total 80 marks)

1. (15=2+3+2+2+3+3 marks)

- (a) "19 is a prime number" is a statement, which we would translate as P(19) (where P(n) denotes "n is prime").
- (b) "If n is even then n is not prime" is a predicate, which we would translate as $E(n) \implies \sim P(n)$ (where E(n) denotes "n is even and P(n) denotes "n is prime"). If we assume the predicate for all such n it becomes a statement we can prove false by counterexample. If n is even then n = 2.p so n has factors other than itself and 1 so is not prime, except when n = 2, when n is both prime and even. Counterexample.
- (c) "Is 13 a prime number?" is neither a statement nor a predicate. It is a question.
- (d) "Solve $x^2 4 = 0$ " is neither a statement nor a predicate. It is a command.
- (e) "Every even number is the sum of two odd numbers" is a statement, which we would symbolise as $(\forall n \in \mathbb{N})(E(n) \implies (\exists m, k)(O(m) \land O(k) \land S(m, k, n)))$ (where E(n) denotes "n is even" and S(m, k, n) denotes "m + k = n"). It is true since if n is even then n = 2.p = p + p = (p-1) + (p+1). If p is odd then the first expression gives two odd numbers and if p is even the second expression dies likewise.
- (f) "There exists a real number n such that for all real r, r.n = n.r = n" is a statement, which we would symbolise as $(\exists n \in \mathbb{R})(\forall r \in \mathbb{R})(n.r = r.n = n)$. The statement is true since $0.r = r.0 = 0 \forall r$

2. (12=4x3 marks)

(a) We have the truth table

A	B	$(\sim$	A)	\vee	B	\land	$ \sim$	(A	\implies	B)
Т	Т	F	Т	Т	Т	F	F	Т	Т	Т
Т	F	F	Т	\mathbf{F}	\mathbf{F}	F	Т	Т	\mathbf{F}	\mathbf{F}
F	Т	Т	\mathbf{F}	Т	Т	F	F	\mathbf{F}	Т	Т
F	F	Т	\mathbf{F}	Т	\mathbf{F}	F	F	\mathbf{F}	Т	\mathbf{F}

From this we see that the main column contains only Fs, so the statement is a contradiction.

(b) We have the truth table

A	B	$ \sim$	(A	\wedge	B)	\implies	\sim	(A	\vee	B)
Т	Т	F	Т	Т	Т	Т	F	Т	Т	Т
Т	F	T	Т	\mathbf{F}	\mathbf{F}	F	F	Т	Т	\mathbf{F}
\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}	Т	F	F	\mathbf{F}	Т	Т
\mathbf{F}	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}	Т	Т	\mathbf{F}	\mathbf{F}	\mathbf{F}

Since both Ts and Fs occur in the principal column, this is neither a tautology nor a contradiction.

(c) We have the truth table

A	В	(A	\implies	B)	\iff	(A	\vee	\sim	B)
Т	Т	Т	Т	Т	Т	Т	Т	F	Т
Т	F	Т	\mathbf{F}	\mathbf{F}	F	Т	Т	Т	\mathbf{F}
\mathbf{F}	Т	F	Т	Т	F	F	\mathbf{F}	\mathbf{F}	Т
\mathbf{F}	F	F	Т	F	Т	F	Т	Т	\mathbf{F}

Again this is neither.

(d) We have the truth table

A	B	(~	A	\implies	B)	\implies	(~	B	\implies	A)
Т	Т	F	Т	Т	Т	Т	F	Т	Т	Т
Т	F	F	Т	Т	\mathbf{F}	Т	T	Т	Т	Т
\mathbf{F}	Т	T	\mathbf{F}	Т	Т	Т	F	\mathbf{F}	Т	\mathbf{F}
\mathbf{F}	F	Т	\mathbf{F}	\mathbf{F}	F	Т	T	\mathbf{F}	F	F

This statement is a tautology.

3. (12=1+1+1+1+2+2+2 marks)

- (a) The contrapositive of A(n) is "If $n^2 + 1$ is even then n is not a multiple of 4".
- (b) The converse of A(n) is "If $n^2 + 1$ is odd then n is a multiple of 4".
- (c) The negation of A(n) is "n is a multiple of 4 and $n^2 + 1$ is even".
- (d) A(n) is true for some $n \in \mathbb{N}$: for example, A(4) is true (since 4 is even and $17 = 4^2 + 1$ is odd).
- (e) A(n) is true for all $n \in \mathbb{N}$. We give a direct proof. Suppose n is a multiple of 4. Then n = 4k for some $k \in \mathbb{Z}$, and so $n^2 + 1 = 16k^2 + 1 = 2(8k^2) + 1$, and $8k^2 \in \mathbb{Z}$, so $n^2 + 1$ is odd.
- (f) By (d) and (e), the contrapositive is true for some $n \in \mathbb{N}$, and indeed for all $n \in \mathbb{N}$, since it is equivalent to A(n) itself.
- (g) The converse of A(n) is true for some $n \in \mathbb{N}$: for example the converse of A(4) is (vacuously) true since $4^2 + 1 = 3$ is odd and 4 is a multiple of 4.
- (h) The converse of A(n) is not true for all $n \in \mathbb{N}$. We give a counterexample. $2^2 + 1 = 5$ odd but 2 is not a multiple of 4.
- 4. (8 marks) If $\sqrt[3]{3}$ is rational then it can be expressed as $3 = \frac{p^3}{q^3}$ with p and q having no common factors. So $p^3 = 3q^3$. So p^3 is a multiple of 3. So p is a multiple of 3. So p = 3k. So $p^3 = 27k^3 = 3q^3$. I.e. $3(k^3) = q^3$. So q^3 is a multiple of 3. So q is a multiple of 3. Contradicting p, q having no common factors.

5. (9=3x3 marks)

- (a) Suppose m < n. Then (since $m, n \ge 0$) $m^3 < mmn < mnn < n^3$, so $m^3 + m < n^3 + n$, i.e. f(m) < f(n).
- (b) Suppose $m \not\leq n$. Then $n \leq m$. If n < m then, by (a), f(m) < f(n), and if m = n then f(m) = f(n). So we have $f(n) \leq f(m)$, so $f(m) \not\leq f(n)$. Hence, by contraposition, if f(m) < f(n) then m < n.

- (c) Let $m, n \in \mathbb{N}$. [We must show that if f(m) = f(n) then m = n.] Suppose, for a contradiction, that f(m) = f(n) but $m \neq n$. Since $m \neq n$ we have m < n or n < m. So, by (a), we have f(m) < f(n) or f(n) < f(m). Either way, we have $f(m) \neq f(n)$, contradicting our assumption that f(m) = f(n). Hence if f(m) = f(n) then m = n, in other words f is one-to-one.
- 6. (a) (3 marks) Let $A = \{1, 2\}$ and $B = \{2, 3\}$. Then $A \setminus B = \{1\}$, but $A \cup B = \{1, 2, 3\}$ and $A \cap B = \{2\}$. Thus $(A \cup B) \setminus (A \cap B) = \{1, 3\}$.
 - (b) (3 marks) $B \subseteq C \iff (x \in B \implies x \in C)$. $x \in B \setminus A \implies (x \in B) \land (x \notin A) \implies (x \in C) \land (x \notin A) \implies x \in C \setminus A$.
 - (c) (3 marks) $A \subseteq B \iff (x \in A \implies x \in B)$. So $A \wedge B^{\mathcal{C}} \neq \varnothing \iff \exists x : (x \in A) \wedge (x \in B^{\mathcal{C}}) \implies x \in B \wedge (x \in B^{\mathcal{C}})$. Contradiction. On the other hand $A \wedge B^{\mathcal{C}} = \varnothing \implies ((x \in A) \implies (x \notin B^{\mathcal{C}}) \implies x \in B))$, so $A \subseteq B$.
 - (d) (3 marks) $(B \setminus A) \cup (A \cap B) = (B \cap A^{\mathcal{C}}) \cup (B \cap A) = A.$ $B \subseteq A \cup B$, so $A \cup B = B \iff A \cup B \subseteq B \implies A \subseteq B$ since $((x \in A) \lor (x \in B) \implies (x \in B)) \implies ((x \in A) \implies (x \in B)).$
 - (e) (**5 marks**)

$$x \in A \setminus \bigcup_{\alpha \in \Lambda} B_{\alpha} \iff x \in A \land x \notin \bigcup_{\alpha \in \Lambda} B_{\alpha}$$
$$\iff x \in A \land \sim (x \in \bigcup_{\alpha \in \Lambda} B_{\alpha})$$
$$\iff x \in A \land \sim (\exists \alpha \in \Lambda)(x \in B_{\alpha})$$
$$\iff x \in A \land (\forall \alpha \in \Lambda)(x \notin B_{\alpha})$$
$$\iff (\forall \alpha \in \Lambda)(x \in A \land x \notin B_{\alpha})$$
$$\iff (\forall \alpha \in \Lambda)(x \in A \land x \notin B_{\alpha})$$
$$\iff x \in \bigcap_{\alpha \in \Lambda} (A \setminus B_{\alpha})$$

Thus $A \setminus \bigcap_{\alpha \in \Lambda} B_{\alpha} = \bigcup_{\alpha \in \Lambda} (A \setminus B_{\alpha}).$

7. (10=2+3+2+3 marks)

- (a) $\mathcal{P}(A) = \{ \emptyset, \{1\}, \{2\}, \{4\}, \{5\}, \{1, 2\}, \{1, 4\}, \{1, 5\}, \{2, 4\}, \{2, 5\}, \{4, 5\}, \{1, 2, 4\}, \{1, 2, 5\}, \{1, 4, 5\}, \{2, 4, 5\}, \{1, 2, 4, 5\} \}$. So $\|\mathcal{P}(A)\| = 2^4 = 16$.
- (b) $\mathcal{P}(B) = \{ \varnothing, \{3\}, \{5\}, \{6\}, \{3,5\}, \{3,6\}, \{5,6\}, \{3,5,6\} \}.$
- (c) $\mathcal{P}(A \cap B) = \mathcal{P}(\{5\}) = \{\varnothing, \{5\}\}.$
- (d) $\|\mathcal{P}(A \cup B)\| = \|\mathcal{P}(\{1, 2, 3, 4, 5, 6\})\| = 2^6 = 64.$