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1.  Prove each of the following specifically from the axioms of the real numbers.

(a)  Given a b, ∈R , a ≠ 0, show there is a unique x such that ax b= .  
If x=b/a is defined to be ax b= , show 

       (i) a b c d ad bc bd/ / ( ) /+ = +  if b d, ≠ 0.  (ii) ( / ).( / ) /a b c d ac bd=  if b d, ≠ 0.

(b)  (i)  x y y z x z< < ⇒ <,        (ii) x y z xz yz< > ⇒ <,  0 .
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(a) Show that  (i) x y x y+ ≤ +  (ii) | | | | . | |xy x y=

(b) Use (ai) to prove by induction that x x x x x xn n1 2 1 2+ + + ≤ + + + ...   ...  .
      
     (c) Show that the distance function d x y x y( , ) = −  obeys the triangle law: d x z d x y d y z( , ) ( , ) ( , )≤ + .

3.  If A B A B, ,  ,⊆ ≠ ∅R , A B⊆ and B is bounded above, show lubA  ≤ lubB.

4.  Find the least upper bound and greatest lower bound of each of the following subsets of R if they exist 
     and determine if either of these is an element of the set concerned.
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5. (a) Show first principles that the sequence 
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, , , , ...  is convergent.  

      (b) Hence or otherwise show that the sequence 
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6.  For each of the following sequences, determine whether or not it is: 

(a) convergent and if so find its limit, 
(b) bounded and if so find a convergent subsequence 
(c) find a subsequence which is increasing. or one which is decreasing, or both if possible.
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7.   If xn{ }  is bounded, consider the sequence g x k nn k= ≥{ }glb{ : }

(a) Show gn{ } is bounded.

(b) Show that if xn{ }  is convergent then gn{ } is also and xn{ }  and gn{ } have the same limit.


