MATHS 255FC	Assignment 5	Due 14th October 2004
	i isoigiiniene e	

- 1. Prove each of the following specifically from the axioms of the real numbers.
 - (a) Given a, b ∈ R, a ≠ 0, show there is a unique x such that ax = b. If x=b/a is defined to be ax = b, show
 (i) a/b+c/d = (ad+bc)/bd if b,d ≠ 0. (ii) (a/b).(c/d) = ac/bd if b,d ≠ 0.
 - (b) (i) $x < y, y < z \Rightarrow x < z$ (ii) $x < y, z > 0 \Rightarrow xz < yz$.
- 2. If *F* is an ordered field we define $|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$
 - (a) Show that (i) $|x + y| \le |x| + |y|$ (ii) $|xy| = |x| \cdot |y|$
 - (b) Use (ai) to prove by induction that $|x_1 + x_2 + ... + x_n| \le |x_1| + |x_2| + ... + |x_n|$.
 - (c) Show that the distance function d(x, y) = |x y| obeys the triangle law: $d(x, z) \le d(x, y) + d(y, z)$.
- **3.** If $A, B \subseteq \mathbf{R}$, $A, B \neq \emptyset$, $A \subseteq B$ and B is bounded above, show lubA \leq lubB.
- 4. Find the least upper bound and greatest lower bound of each of the following subsets of \mathbf{R} if they exist and determine if either of these is an element of the set concerned.

(i)
$$\emptyset$$
 (ii) $[0,\infty)$ (iii) $[-\pi,\pi)$ (iv) $[-\pi,\pi) \cap \mathbf{Q}$ (v) $\left\{\frac{1}{\sqrt{n}} : n \in \mathbf{N}\right\}$ (vi) $\left\{\left(1+\frac{2}{n}\right)^n n = 1,2, \ldots\right\}$

- 5. (a) Show first principles that the sequence $\left\{\frac{2n+1}{n+2}, n=0, 1, 2, ...\right\}$ is convergent. (b) Hence or otherwise show that the sequence $\left\{\sqrt{\frac{2n+1}{n+2}}, n=0, 1, 2, ...\right\}$ is convergent.
- 6. For each of the following sequences, determine whether or not it is:
 - (a) convergent and if so find its limit,
 - (b) bounded and if so find a convergent subsequence
 - (c) find a subsequence which is increasing. or one which is decreasing, or both if possible.

(i)
$$\left\{1^{n} + (-1)^{n}: n \in \mathbb{N}\right\}$$
 (ii) $\left\{\frac{1}{n^{3}}: n \in \mathbb{N}\right\}$ (iii) $\left\{\frac{1^{n}}{n^{3}} + \frac{(-1)^{n}}{n^{3}}: n \in \mathbb{N}\right\}$ (iv) $\left\{n^{n}: n \in \mathbb{N}\right\}$ (v) $\left\{\frac{n!}{n^{n}}: n \in \mathbb{N}\right\}$

7. If $\{x_n\}$ is bounded, consider the sequence $\{g_n = \text{glb}\{x_k: k \ge n\}\}$

- (a) Show $\{g_n\}$ is bounded.
- (b) Show that if $\{x_n\}$ is convergent then $\{g_n\}$ is also and $\{x_n\}$ and $\{g_n\}$ have the same limit.