DEPARTMENT OF MATHEMATICS

Maths 255 FS	Assignment 3	Due: 16 Sept 2004

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

PLEASE SHOW ALL WORKING.

- 1. Let $A = \{2 \frac{1}{2^n} : n \in \mathbb{N}\}$ and view A as a totally ordered set under the usual ordering on \mathbb{R} . Show $A \simeq \mathbb{N}$ as posets by showing the obvious function from \mathbb{N} to A is an order isomorphism.
- **2.** Let $f : A \to B$ be a function. Define a new function $F : \mathcal{P}(A) \to \mathcal{P}(B)$ by declaring that, for $S \subseteq A$,

$$F(S) = \{ f(a) : a \in S \}.$$

Show that F is one-to-one if and only if f is one-to-one.

- **3.** Let $f : A \to B$ and $g : B \to C$ be functions. Show that if $g \circ f$ is one-to-one and f is onto then g is one-to-one.
- **4.** Let $f: X \to Y$ be a function, let Λ be a nonempty indexing set, and for each $\alpha \in \Lambda$ let S_{α}, A, B be a subsets of Y.
 - (a) Show that $f^{-1}(S_Y^{\mathbb{C}}) = f^{-1}(S)_X^{\mathbb{C}}$.
 - (b) Show that $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$.
 - (c) Show that $f^{-1}(A \setminus \bigcap_{\alpha \in \Lambda} S_{\alpha}) = \bigcup_{\alpha \in \Lambda} f^{-1}(A \setminus S_{\alpha}).$
 - (d) Show that if $A, B \subseteq X, f(A \setminus B) \supseteq f(A) \setminus f(B)$.
 - (e) Find a function $f: S \to S$ and subsets $A, B \subseteq S$ such that $f(A \setminus B) \neq f(A) \setminus f(B)$.
- 5. Show that given the axioms for \mathbb{N} and \mathbb{Z} , there exists a unique x : a + x = b and hence that b c can be defined for all $b, c \in \mathbb{Z}$ according to the definition in the notes. Use this to show that
 - (a) for all $x \in \mathbb{Z}$, -(-x) = x; and
 - (b) for any $x \in \mathbb{Z}$, $-x = (-1) \cdot x$.
 - (c) for all $x, y, z \in \mathbb{Z}, x.(y-z) = x.y x.z$.
- 6. Use the modified version of Euclid's Algorithm to find gcd(a, b) and integers x and y with gcd(a, b) = ax + by for the following pairs of integers.
 - (a) 72 and 78.
 - (b) 928 and 2944.
 - (c) 1173 and 957.

- 7. Show that if $a, b, c, x, y \in \mathbb{Z}$ with $c \mid a$ and $c \mid b$ then $c \mid ax + by$.
- 8. Recall that if $r, s \in \mathbb{Z}$, we say that r and s are relatively prime if the only positive common divisor of r and s is 1, in other words if gcd(r, s) = 1.
 - (a) Show that if there exist $x, y \in \mathbb{Z}$ with rx + sy = 1 then r and s are relatively prime.
 - (b) Show that if r and s are relatively prime and $r \neq s$, then so are s and r s.
 - (c) Let $a, b \in \mathbb{N}$ and suppose $a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ and $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}$, where p_1, \dots, p_t are distinct primes and α_i, β_i are nonnegative integers. Let $m_1 = \min\{\alpha_i, \beta_i\}$. Show that $gcd(a, b) = p_1^{m_1} p_2^{m_2} \dots p_t^{m_t}$
 - (d) Suppose m_1, m_2, \ldots, m_k are integers and p is a prime number. Use induction to show that if $p \mid m_1 m_2 \cdots m_k$ then $p \mid m_i$ for some i.