DEPARTMENT OF MATHEMATICS

MATHS 255	Assignment 2	Due: 19th August 2004

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

- 1. Show by induction that for all $n \in \mathbb{N}$, $12 \mid n^4 n^2$. [You will need to check some cases for k during the process.]
- **2.** Show that for all $n \ge 10$, $2^n > n^3$.
- **3.** Use induction to show that $\sum_{i=1}^{n} (2n-1)^2 = 1^2 + 3^2 + \dots + (2n-1)^2 = \frac{n}{3} (2n+1)(2n-1).$
- **4.** A function $f : \mathbb{Q} \to \mathbb{Q}$ is a *flat* function if for all $m, n \in \mathbb{Q}$, f(m+n) = f(m) + f(n). Suppose f is a flat function and f(1) = a. Show using induction that:
 - (a) f(kn) = kf(n) for all $k \in \mathbb{N}, n \in \mathbb{Q}$.
 - (b) f(n) = an for all $n \in \mathbb{N}$.
 - (c) f(n) = an for all $n \in \mathbb{Z}$.
 - (d) f(n) = an for all $n \in \mathbb{Q}$.
- 5. Indicate whether each of the following relations on the given set is reflexive, symmetric, antisymmetric, or transitive. Explain your answers.
 - (a) $A = \{x \in \mathbb{R} : x > 0\}$ and $x \rho y$ iff xy = 0.
 - (b) $B = \{x \in \mathbb{Z} : x \ge 0\}$ and $x \rho y$ iff x + y = 4.
 - (c) $C = \{1, 2, 4\}$ and $\rho = \{(2, 1), (2, 4), (1, 1), (4, 2), (2, 2)\}.$
 - (d) $D = \mathbb{Q}$ and $x \rho y$ iff $x y \in \mathbb{Z}$.
- **6.** Define a relation \leq on \mathbb{N} by declaring that for $x, y \in \mathbb{N}$,

$$x \leq y \iff (x = y) \lor (2x \leq y).$$

Show that \leq is a partial order on \mathbb{N} , but not a total order.

- 7. Let $A = \{1, 2, 3..., 18\}$ and $B = \{n \in \mathbb{N} : n \mid 18\}.$
 - (a) Draw lattice diagrams for (A, |) and (B, |).
 - (b) Indicate any maximal, minimal, greatest and least elements in each.
 - (c) Find the least upper bound for $\{1, 2, 3\}$ in B.
 - (d) Find a subset of A which has no least upper bound.

8. Let (A, \preceq) be a poset with the least upper bound property. Let $S \subseteq A$ with $S \neq \emptyset$. Suppose S has at least one lower bound. Put $L_S = \{b \in A : b \text{ is a lower bound for } S\}$. Show that L_S is nonempty and has at least one upper bound.

From the least upper bound property, we know that $\sup L_S$ exists. Put $g = \sup L_S$. Show that g is a greatest lower bound for S, in other words that

- g is a lower bound for S, and
- if b is a lower bound for S then $b \leq g$.
- **9.** Define a relation ρ on $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ by declaring that, for $(x, y), (u, v) \in \mathbb{R}^2$,

$$(x,y) \ \rho \ (u,v) \iff \mid x \mid + \mid y \mid = \mid u \mid + \mid v \mid.$$

Show that ρ is an equivalence relation. What is the equivalence class $T_{(x,y)}$ of the element (x, y)?