Monday: Division in \mathbb{Z}_n

The cancellation laws in \mathbb{Z}_n

Recall that in \mathbb{Z} we have two cancellation laws: a + c = b + c implies a = b, and ac = bc implies a = b for $c \neq 0$. The first of these laws carries over to \mathbb{Z}_n , because we can use the same argument as we did for \mathbb{Z} : the element \overline{a} has an additive inverse $\overline{-a}$. However, the cancellation law for \cdot_n does not always work. For example, fix n = 12. Then we have $\overline{3} \cdot_{12} \overline{4} = \overline{12} = \overline{0}$, and $\overline{6} \cdot_{12} \overline{4} = \overline{24} = \overline{0}$, so $\overline{3} \cdot_{12} \overline{4} = \overline{6} \cdot_{12} \overline{4}$, but $\overline{3} \neq \overline{6}$.

The problem is that we cannot divide both sides of the equation $\overline{3}_{\cdot_{12}}\overline{4} = \overline{6}_{\cdot_{12}}\overline{4}$ by $\overline{4}$. What would division mean? When might division work? What should $\frac{\overline{a}}{\overline{b}}$ mean when $\overline{a}, \overline{b} \in \mathbb{Z}_n$?

In \mathbb{Q} , the fraction $\frac{a}{b}$ is the unique solution x of the equation a = bx. So the problem becomes the question of whether the equation $\overline{a} = \overline{b} \cdot_n \overline{x}$ has a unique solution \overline{x} . In general, this equation could have no solutions, a unique solution, or more than one solution.

Example 1. Consider the equation $\overline{6} = \overline{4} \cdot_n \overline{x}$. Show that this equation has

- no solutions when n = 8
- two solutions when n = 10
- a unique solution when n = 15.

Now, if $\overline{a} = \overline{b} \cdot \overline{x}$ has a solution \overline{x} , then $a \equiv bx \pmod{n}$, so a = bx + ny for some $y \in \mathbb{Z}$. From our discussion of Diophantine equations, we know this happens if and only if $gcd(b,n) \mid a$. In particular, if gcd(b,n) = 1, then this equation has a solution for all a. Further, the solution will be unique:

Theorem 2. Let $a, b \in \mathbb{Z}$, $x \in \mathbb{N}$. If b and n are relatively prime then the equation $\overline{a} = \overline{b} \cdot_n \overline{x}$ has a unique solution $\overline{x} \in \mathbb{Z}_n$.

Corollary 3. If p is a prime number then for every $b \not\equiv 0 \pmod{p}$ the equation $\overline{a} = \overline{b} \cdot_p \overline{x}$ has a unique solution in \mathbb{Z}_p .

Thus, division works in \mathbb{Z}_p just the same as it does in \mathbb{Q} and \mathbb{R} . We will return to this example, which is an example of a *field*, when we discuss the axioms for the real numbers in Chapter 8.

Tuesday: Polynomials

Definition. A polynomial in x over \mathbb{R} (or, more briefly, a polynomial) is an expression of the form

$$a(x) = a_0 + a_1 x + \dots + a_n x^n$$

where $a_0, a_1, \ldots, a_n \in \mathbb{R}$. We may change the order of the terms, and omit the terms where $a_i = 0$. The numbers a_0, a_1, \ldots, a_n are called the coefficients.

The set of all such polynomials is denoted by $\mathbb{R}[x]$.

Definition. The degree of the term $a_i x^i$ is *i*. The degree of the polynomial $a_0 + a_1 x + \cdots + a_n x^n$ is the greatest *i* such that $a_i \neq 0$. If there is no such *i* (*i.e.* a(x) = 0), then the degree is $-\infty$. We denote the degree of a(x) by deg a(x).

We can also consider polynomials over other sets of numbers, such as $\mathbb{Z}[x]$ (polynomials with integer coefficients), $\mathbb{Q}[x]$ (polynomials with rational coefficients) and so on.

We usually just think of a polynomial over \mathbb{R} as being a function from \mathbb{R} to \mathbb{R} . However, we must be careful when considering polynomials over \mathbb{Z}_n : there are infinitely many polynomials, and only finitely many functions from \mathbb{Z}_n to \mathbb{Z}_n , so sometimes different polynomials give the same function. For example, we have $\bar{a}^n - \bar{a} = 0$ for all $\bar{a} \in \mathbb{Z}_n$, but the polynomials $x^n - x$ and 0 are not equal.

Addition of polynomials

Now that we have our set $\mathbb{R}[x]$, we will define operations of addition and multiplication on $\mathbb{R}[x]$. First, we consider addition. To add together two polynomials, we just collect together the terms with the same degree. In other words, we have

$$(a_0 + a_1x + \dots + a_nx^n) + (b_0 + b_1x + \dots + b_nx^n) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n.$$

If the two polynomials had different degrees, we have to "padd out" the one with the lower degree with terms $0x^i$. To put this another way, we have

$$(a_0 + a_1x + \dots + a_nx^n) + (b_0 + b_1x + \dots + b_mx^m) = c_0 + c_1x + \dots + c_Nx^N$$

where $N = \max(n, m)$, and for $0 \le k \le N$ we have $c_k = a_k + b_k$. [In this definition, if i > n then $a_i = 0$ and if i > m then $b_i = 0$.]

Exercise 4. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree of a(x) + b(x)?

Multiplication of polynomials

What happens when we multiply together the polynomials $a_0 + a_1 x$ and $b_0 + b_1 x + b_2 x^2$? If we multiply out the brackets and collect terms together we get

$$\begin{aligned} (a_0 + a_1 x)(b_0 + b_1 x + b_2 x^2) &= a_0 b_0 + a_0 b_1 x + a_0 b_2 x^2 + a_1 b_0 x + a_1 b_1 x^2 + a_1 b_2 x^3 \\ &= a_0 b_0 + (a_0 b_1 + a_1 b_0) x + (a_0 b_2 + a_1 b_1) x^2 + a_1 b_2 x^3 \end{aligned}$$

In general, we have

$$(a_0 + a_1x + \dots + a_nx^n)(b_0 + b_1x + \dots + b_mx^m) = c_0 + c_1x + \dots + c_{n+m}x^{n+m},$$

where for $0 \le k \le n+m$, $c_k = \sum_{i=0}^k a_i b_{k-i}$. [As before, we take $a_i = b_j = 0$ for any i > n, j > m.]

Exercise 5. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree of a(x)b(x)?

Multiplication in $\mathbb{R}[x]$ is rather like multiplication in \mathbb{Z} . As in \mathbb{Z} , we define a notion of "divisibility": we write $a(x) \mid b(x)$ if there is some c(x) such that b(x) = a(x)c(x). Like \mathbb{Z} , and unlike \mathbb{N} , this relation in **not** antisymmetric. In \mathbb{Z} we have that if $a \mid b$ and $b \mid a$ then $a = \pm b$. In $\mathbb{R}[x]$, we have that if $a(x) \mid b(x)$ and $b(x) \mid a(x)$ then a(x) = cb(x) for some $c \neq 0$.

Thursday: The Euclidean Algorithm in $\mathbb{R}[x]$

In \mathbbm{Z} we use the Euclidean Algorithm to find greatest common divisors. What makes this possible is the Division Algorithm.

Since we also have the Division Algorithm in $\mathbb{R}[x]$, we can use a similar process to find greatest common divisors in $\mathbb{R}[x]$.

Example 6. Find the greatest common divisor of $a(x) = 2x^3 + x^2 - 2x - 1$ and $b(x) = x^3 - x^2 + 2x - 2$.

Solution. We use the Euclidean Algorithm: first divide b(x) into a(x), then divide the remainder into b(x), then divide this new remainder into the first one, and so on. The last non-zero remainder is the greatest common divisor.

We have

$$2x^{3} + x^{2} - 2x - 1 = 2(x^{3} - x^{2} + 2x - 2) + (3x^{2} - 6x + 3)$$

$$x^{3} - x^{2} + 2x - 2 = (\frac{1}{3}x + \frac{1}{3})(3x^{2} - 6x + 3) + (3x - 3)$$

$$3x^{2} - 6x + 3 = (x - 1)(3x - 3)$$

So the last non-zero remainder is d(x) = 3x - 3.

Theorem 7 (The Factor Theorem). Let $p(x) \in \mathbb{R}[x]$, and let $a \in \mathbb{R}$. Then $(x - a) \mid p(x)$ if and only if p(a) = 0.

Proof. Suppose first that (x - a) | p(x). Then there is some q(x) such that p(x) = q(x)(x - a). But then p(a) = q(a)(a - a) = 0.

Conversely, suppose that p(a) = 0. By the Division Algorithm in $\mathbb{R}[x]$, we can find polynomials q(x) and r(x) with deg r(x) < 1 such that p(x) = q(x)(x-a) + r(x). Now, since deg r(x) < 1, r(x) is a constant. Also, we have p(a) = q(a)(a-a) + r(a), in other words $0 = q(a) \cdot 0 + r(a)$, so r(a) = 0. Hence r(x) = 0, so we have p(x) = q(x)(x-a), so $(x-a) \mid p(x)$.

Irreducible polynomials in $\mathbb{R}[x]$

Definition. A polynomial $p(x) \in \mathbb{R}[x]$ is reducible in $\mathbb{R}[x]$ if it can be factorised as p(x) = a(x)b(x), where $a(x), b(x) \in \mathbb{R}[x]$ with deg $a(x) < \deg p(x)$ and deg $b(x) < \deg p(x)$. It is irreducible in $\mathbb{R}[x]$ if it is not reducible in $\mathbb{R}[x]$.

When we say that a polynomial is irreducible, we must specify over what field of coefficients. For example, the polynomial $x^2 + 1$ is irreducible in $\mathbb{R}[x]$, but it can be factorised as (x - i)(x + i) in $\mathbb{C}[x]$.

Exercise 8. Show that every linear polynomial ax + b (with $a \neq 0$) is irreducible.

The irreducible polynomials in $\mathbb{R}[x]$ play the same rôle in $\mathbb{R}[x]$ that the primes play in \mathbb{Z} : every polynomial of degree greater than 0 can be written as a product of (one or more) irreducible polynomials. Moreover, as with uniqueness of prime factorisations in \mathbb{Z} , the factorisation of a polynomial as a product of irreducibles is unique (up to the order of the elements, and multiplication by constants).

Friday: Groups

Definition. Let * be a binary operation on a set A with identity element e. Let $a \in A$. Then b is an inverse of a if a * b = b * a = e.

Example 9. The inverse of a real number x under the operation + is the number -x: we have x + (-x) = (-x) + x = 0.

Definition. A group is a pair (G, *) where * is a binary operation on G such that

- for any $a, b, c \in G$, a * (b * c) = (a * b) * c;
- there is some $e \in G$ such that, for every $a \in G$, a * e = e * a = a; and
- for any $a \in G$ there is some $b \in G$ with a * b = b * a = e.

We often abuse notation and refer to "the group G" instead of "the group (G, *)".

Example 10. The integers form a group under addition, in other words $(\mathbb{Z}, +)$ is a group. The non-zero real numbers for a group under multiplication, in other words $(\mathbb{R} \setminus \{0\}, \cdot)$ is a group.

Proposition 11. The inverse of a is unique. In other words, if a * b = b * a = e and a * c = c * a = e then b = c.

Because of this uniqueness, we can denote the inverse of an element a by a^{-1} .

Proposition 12. If (G, *) is a group and $a, b, c \in G$ with a * b = a * c then b = c.

This is sometimes called the *cancellation law*.

Cayley tables

If * is a binary operation on a finite set, we can write down a "multiplication table" for *. For example, we can define an operation * on the set $G = \{e, a, b, c\}$ by the following table:

*	e	a	b	c
e	e	a	b	c
a	a	b	c	e
b	b	c	e	a
c	c	e	a	b

We call this the *Cayley table* of the operation.

Exercise 13. Show that if * is defined by the above table then (G, *) is a group.

Proposition 14. Each element of G occurs exactly once in each row and each column of the Cayley table of a group operation.

Proposition 15. Let (G, *) be a group with identity element e.

- 1. If $x \in G$ satisfies x * x = x, then x = e.
- 2. If $x, y \in G$ satisfy x * y = y, then x = e. [Put another way, if x * y = y for some $y \in G$ then x * y = y for every $y \in G$.]

Exercise 16. Given that \oplus is a group operation on the set $G = \{p, q, r, s\}$, complete the following Cayley table: