
Department of Mathematics

MATHS 255 Lecture outlines for week 8

Monday: Division in Zn

The cancellation laws in Zn

Recall that in Z we have two cancellation laws: a + c = b + c implies a = b, and ac = bc implies a = b for
c 6= 0. The first of these laws carries over to Zn, because we can use the same argument as we did for Z:
the element a has an additive inverse −a. However, the cancellation law for ·n does not always work. For
example, fix n = 12. Then we have 3 ·12 4 = 12 = 0, and 6 ·12 4 = 24 = 0, so 3 ·12 4 = 6 ·12 4, but 3 6= 6.

The problem is that we cannot divide both sides of the equation 3 ·12 4 = 6 ·12 4 by 4. What would division

mean? When might division work? What should
a

b
mean when a, b ∈ Zn?

In Q, the fraction a
b is the unique solution x of the equation a = bx. So the problem becomes the question

of whether the equation a = b ·n x has a unique solution x. In general, this equation could have no
solutions, a unique solution, or more than one solution.

Example 1. Consider the equation 6 = 4 ·n x. Show that this equation has

• no solutions when n = 8

• two solutions when n = 10

• a unique solution when n = 15.

Now, if a = b · x has a solution x, then a ≡ bx (mod n), so a = bx + ny for some y ∈ Z. From our
discussion of Diophantine equations, we know this happens if and only if gcd(b, n) | a. In particular, if
gcd(b, n) = 1, then this equation has a solution for all a. Further, the solution will be unique:

Theorem 2. Let a, b ∈ Z, x ∈ N. If b and n are relatively prime then the equation a = b ·n x has a unique
solution x ∈ Zn.

Corollary 3. If p is a prime number then for every b 6≡ 0 (mod p) the equation a = b ·p x has a unique
solution in Zp.

Thus, division works in Zp just the same as it does in Q and R. We will return to this example, which is
an example of a field, when we discuss the axioms for the real numbers in Chapter 8.

Tuesday: Polynomials

Definition. A polynomial in x over R (or, more briefly, a polynomial) is an expression of the form

a(x) = a0 + a1x + · · ·+ anxn

where a0, a1, . . . , an ∈ R. We may change the order of the terms, and omit the terms where ai = 0. The
numbers a0, a1, . . . , an are called the coefficients.
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The set of all such polynomials is denoted by R[x].

Definition. The degree of the term aix
i is i. The degree of the polynomial a0 + a1x + · · ·+ anxn is the

greatest i such that ai 6= 0. If there is no such i (i.e. a(x) = 0), then the degree is −∞. We denote the
degree of a(x) by deg a(x).

We can also consider polynomials over other sets of numbers, such as Z[x] (polynomials with integer
coefficients), Q[x] (polynomials with rational coefficients) and so on.

We usually just think of a polynomial over R as being a function from R to R. However, we must be
careful when considering polynomials over Zn: there are infinitely many polynomials, and only finitely
many functions from Zn to Zn, so sometimes different polynomials give the same function. For example,
we have ān − ā = 0 for all ā ∈ Zn, but the polynomials xn − x and 0 are not equal.

Addition of polynomials

Now that we have our set R[x], we will define operations of addition and multiplication on R[x]. First,
we consider addition. To add together two polynomials, we just collect together the terms with the same
degree. In other words, we have

(a0 + a1x + · · ·+ anxn) + (b0 + b1x + · · ·+ bnxn) = (a0 + b0) + (a1 + b1)x + · · ·+ (an + bn)xn.

If the two polynomials had different degrees, we have to “padd out” the one with the lower degree with
terms 0xi. To put this another way, we have

(a0 + a1x + · · ·+ anxn) + (b0 + b1x + · · ·+ bmxm) = c0 + c1x + · · ·+ cNxN ,

where N = max(n, m), and for 0 ≤ k ≤ N we have ck = ak + bk. [In this definition, if i > n then ai = 0
and if i > m then bi = 0.]

Exercise 4. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree
of a(x) + b(x)?

Multiplication of polynomials

What happens when we multiply together the polynomials a0 + a1x and b0 + b1x + b2x
2? If we multiply

out the brackets and collect terms together we get

(a0 + a1x)(b0 + b1x + b2x
2) = a0b0 + a0b1x + a0b2x

2 + a1b0x + a1b1x
2 + a1b2x

3

= a0b0 + (a0b1 + a1b0)x + (a0b2 + a1b1)x2 + a1b2x
3

In general, we have

(a0 + a1x + · · ·+ anxn)(b0 + b1x + · · ·+ bmxm) = c0 + c1x + · · ·+ cn+mxn+m,

where for 0 ≤ k ≤ n + m, ck =
∑k

i=0 aibk−i. [As before, we take ai = bj = 0 for any i > n, j > m.]

Exercise 5. Suppose a(x) and b(x) are polynomials of degree n and m respectively. What is the degree
of a(x)b(x)?

Multiplication in R[x] is rather like multiplication in Z. As in Z, we define a notion of “divisibility”: we
write a(x) | b(x) if there is some c(x) such that b(x) = a(x)c(x). Like Z, and unlike N, this relation in
not antisymmetric. In Z we have that if a | b and b | a then a = ±b. In R[x], we have that if a(x) | b(x)
and b(x) | a(x) then a(x) = cb(x) for some c 6= 0.
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Thursday: The Euclidean Algorithm in R[x]

In Z we use the Euclidean Algorithm to find greatest common divisors. What makes this possible is the
Division Algorithm.

Since we also have the Division Algorithm in R[x], we can use a similar process to find greatest common
divisors in R[x].

Example 6. Find the greatest common divisor of a(x) = 2x3 + x2 − 2x− 1 and b(x) = x3 − x2 + 2x− 2.

Solution. We use the Euclidean Algorithm: first divide b(x) into a(x), then divide the remainder into b(x),
then divide this new remainder into the first one, and so on. The last non-zero remainder is the greatest
common divisor.

We have

2x3 + x2 − 2x− 1 = 2(x3 − x2 + 2x− 2) + (3x2 − 6x + 3)

x3 − x2 + 2x− 2 = (1
3x + 1

3 )(3x2 − 6x + 3) + (3x− 3)

3x2 − 6x + 3 = (x− 1)(3x− 3)

So the last non-zero remainder is d(x) = 3x− 3.

Theorem 7 (The Factor Theorem). Let p(x) ∈ R[x], and let a ∈ R. Then (x − a) | p(x) if and only
if p(a) = 0.

Proof. Suppose first that (x− a) | p(x). Then there is some q(x) such that p(x) = q(x)(x − a). But then
p(a) = q(a)(a− a) = 0.

Conversely, suppose that p(a) = 0. By the Division Algorithm in R[x], we can find polynomials q(x) and
r(x) with deg r(x) < 1 such that p(x) = q(x)(x − a) + r(x). Now, since deg r(x) < 1, r(x) is a constant.
Also, we have p(a) = q(a)(a − a) + r(a), in other words 0 = q(a) · 0 + r(a), so r(a) = 0. Hence r(x) = 0,
so we have p(x) = q(x)(x − a), so (x − a) | p(x).

Irreducible polynomials in R[x]

Definition. A polynomial p(x) ∈ R[x] is reducible in R[x] if it can be factorised as p(x) = a(x)b(x),
where a(x), b(x) ∈ R[x] with deg a(x) < deg p(x) and deg b(x) < deg p(x). It is irreducible in R[x] if it is
not reducible in R[x].

When we say that a polynomial is irreducible, we must specify over what field of coefficients. For example,
the polynomial x2 + 1 is irreducible in R[x], but it can be factorised as (x− i)(x + i) in C[x].

Exercise 8. Show that every linear polynomial ax + b (with a 6= 0) is irreducible.

The irreducible polynomials in R[x] play the same rôle in R[x] that the primes play in Z: every polynomial
of degree greater than 0 can be written as a product of (one or more) irreducible polynomials. Moreover, as
with uniqueness of prime factorisations in Z, the factorisation of a polynomial as a product of irreducibles
is unique (up to the order of the elements, and multiplication by constants).
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Friday: Groups

Definition. Let ∗ be a binary operation on a set A with identity element e. Let a ∈ A. Then b is an
inverse of a if a ∗ b = b ∗ a = e.

Example 9. The inverse of a real number x under the operation + is the number −x: we have x+(−x) =
(−x) + x = 0.

Definition. A group is a pair (G, ∗) where ∗ is a binary operation on G such that

• for any a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c;

• there is some e ∈ G such that, for every a ∈ G, a ∗ e = e ∗ a = a; and

• for any a ∈ G there is some b ∈ G with a ∗ b = b ∗ a = e.

We often abuse notation and refer to “the group G” instead of “the group (G, ∗)”.
Example 10. The integers form a group under addition, in other words (Z, +) is a group. The non-zero
real numbers for a group under multiplication, in other words (R \ {0}, ·) is a group.

Proposition 11. The inverse of a is unique. In other words, if a ∗ b = b ∗ a = e and a ∗ c = c ∗ a = e
then b = c.

Because of this uniqueness, we can denote the inverse of an element a by a−1.

Proposition 12. If (G, ∗) is a group and a, b, c ∈ G with a ∗ b = a ∗ c then b = c.

This is sometimes called the cancellation law.

Cayley tables

If ∗ is a binary operation on a finite set, we can write down a “multiplication table” for ∗. For example,
we can define an operation ∗ on the set G = {e, a, b, c} by the following table:

∗ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

We call this the Cayley table of the operation.

Exercise 13. Show that if ∗ is defined by the above table then (G, ∗) is a group.

Proposition 14. Each element of G occurs exactly once in each row and each column of the Cayley table
of a group operation.

Proposition 15. Let (G, ∗) be a group with identity element e.

1. If x ∈ G satisfies x ∗ x = x, then x = e.

2. If x, y ∈ G satisfy x∗y = y, then x = e. [Put another way, if x∗y = y for some y ∈ G then x∗y = y
for every y ∈ G.]
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Exercise 16. Given that ⊕ is a group operation on the set G = {p, q, r, s}, complete the following Cayley
table:

⊕ p q r s
p r
q q
r
s
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