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MATHS 255 Lecture outlines for week 7

Monday: Linear Diophantine equations and cancellation laws

Linear Diophantine equations

A Diophantine equation is an algebraic equation (e.g. ax2 + bx + cxy = d) in which the coefficients (a, b,
c and d) are integers, and for which we seek integer solutions x and y. We will consider the special case
of linear Diophantine equations, which are of the form

ax + by = c, (∗)

where a, b, c ∈ Z: we seek all integers x and y satisfying the equation (∗). Of course, if x and y were
allowed to be real numbers, then (∗) would be the equation of a straight line: we ask when this straight
line intersects the lattice of points Z2 = { (x, y) : x, y ∈ Z }. In general, a straight line could intersect Z2

in no points (e.g. y = x+
√

2), in one point (e.g. y =
√

2x, which intersects Z2 only at the point (0, 0)) or
infinitely often (e.g. y = x). When we insist on integer coefficients only the first and the third possibilities
occur.

We will ignore the case when a = 0 or b = 0: that case is easy to deal with. So for the rest of this section
we will assume that a, b 6= 0. Put d = gcd(a, b). We know that d | a and d | b, so for any x, y ∈ Z we have
d | ax + by. Thus if (∗) has a solution, we must have d | c: if d - c then no solution is possible.

Example 1. The equation 2x + 4y = 3 has no solutions: if x and y satisfied the equation, then the left
hand side would be even but the right hand side would be odd.

So suppose that d | c, in other words c = dq for some q. Now, we know that there exist xd, yd ∈ Z with
d = axd + byd. Multiplying by q we get dq = axdq + bydq, i.e. c = a(xdq) + b(ydq). Thus (xdq, ydq) is a
solution of (∗).
Example 2. Find a solution to the equation 4x + 7y = 13.

What about the general solution? What happens if we try to prove the solution is unique?

Suppose that (x, y) and (x′, y′) are solutions. Then we have

ax + by = c = ax′ + by′,

so a(x − x′) + b(y − y′) = 0, or a(x − x′) = b(y′ − y). Does this imply that x − x′ = y′ − y = 0? No, it
only implies that the number a(x− x′) is a common multiple of a and b. If m is any common multiple of
a and b, say m = ra = sb, then we can put x′ = x− r, y′ = y + s to get

a(x− x′) + b(y − y′) = a(x− (x − r)) + b(y − (y + s)) = ar − bs = m−m = 0,

as required. So the general solution is given by x = qxd −m/a, y = qyd + m/b, where m is a common
multiple of a and b. Note that m is a common multiple of a and b if and only if lcm(a, b) | m. So the
general solution is x = qxd− tl/a, y = qyd + tl/b, where l = lcm(a, b) and t ∈ Z. Also, from Assignment 7,
Question 1 we know that ld = ab, so l/a = b/d and l/b = a/d. Combining these facts we have the following
theorem.

MATHS 255 Lecture outlines for week 7 Page 1 of 3



Theorem 3. Let a, b, c ∈ Z with a, b 6= 0. Put d = gcd(a, b), and fix xd, yd ∈ Z with d = axd + byd. Then
the equation ax + by = c has no integer solutions if d - c, and has the general solution x = c

dxd − t b
d ,

y = c
dyd + ta

d for t ∈ Z if d | c.
Example 4. Find the general solution of the Diophantine equation 4x + 7y = 13.

Example 5. Find the general solution of the Diophantine equation 6x− 15y = 27.

Cancellation laws

In Z we have two cancellation laws: “if a + c = b + c then a = b” and “if ac = bc and c 6= 0 then a = b”.
The first is easy to prove from the axioms: if a + c = b + c then we have

(a + c) + (−c) = (b + c) + (−c)
a + (c + (−c)) = b + (c + (−c)) (associative law)

a + 0 = b + 0 (definition of −c)
a = b (definition of 0)

However, we don’t have multiplicative inverses as we do additive inverses. Of course we could jump outside
Z and into Q, and multiply both sides by 1

c , but that relies on other things, not on the axioms for the
integers. To get the cancellation law from the axioms alone, we would have to do a little work. One way
to prove it would be to prove by induction that the result holds for all c ∈ N, and then extend the result
to negative values of c. We will leave this as an exercise.

Tuesday: Review

Thursday: Class Test

Friday: Congruence Modulo n

When we considered equivalence relations we had as an example the relation ∼ on Z defined by declaring
that for m, n ∈ Z we have

m ∼ n ⇐⇒ 5 | m− n.

We showed that ∼ is an equivalence relation. This relation is called congruence modulo 5. In general, if
n ∈ N we say that a and b are congruent modulo n if n | a− b: we write this relation a ≡ b (mod n). This
relation is an equivalence relation for every n ∈ N. The set of equivalence classes is called the integers
modulo n, written Zn. For a ∈ Z, we call the equivalence class of a under congruence modulo n the
congruence class of a, and denote it by a.

Example 6. Fix n = 5. Find 0, 1, 10 and 16.

Lemma 7. Let a, b ∈ Z, n ∈ N. Then a ≡ b (mod n) iff a and b give the same remainder when divided
by n.

From this we know that there are exactly n congruence classes in Zn, because there are n possible
remainders 0, 1, . . . , n− 1. So we have

Zn = {0, 1, 2, . . . , n− 1}.
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The set Zn inherits some properties from Z. The most important is that we can define addition and
multiplication on Zn in a natural way.

Definition. We define the operations +n and ·n on Zn by declaring that, for a, b ∈ Z,

a +n b = a + b and a ·n b = ab.

Of course we can write down any definition we like: we could define n to be the least positive solution of
the equation x = x+ 1. . . . For this definition to make sense we have to make sure that the operations are
well-defined. For example, with n = 5, consider finding 3 +5 7 and finding 18 +5 22. We have

3 +5 7 = 3 + 7 = 10 = 0 and 18 +5 22 = 18 + 22 = 40 = 0.

Thus we get the same answer both times. This is just as well, because 3 = 18 and 7 = 22, so we were
doing the same sum in both cases.

For the definitions of +n and ·n to make sense, we must ensure that if a = a′ and b = b′ then we get the
same answer when we work out a+n b and when we work out a′ +n b′, and similarly for ·n. In other words,
we must show that if a ≡ a′ (mod n) and b ≡ b′ (mod n) then a + b ≡ a′ + b′ (mod n) and ab ≡ a′b′

(mod n).

Lemma 8. Let a, b, a′, b′ ∈ Z, n ∈ N. If a ≡ a′ (mod n) and b ≡ b′ (mod n) then a+ b ≡ a′ + b′ (mod n)
and ab ≡ a′b′ (mod n).

To understand what we have done we should see an example where the operations would not be well
defined.

Example 9. Partition Z into the three sets Ω = {A,B, C}

A = N
B = {0}
C = {−n : n ∈ N }.

We try to define addition +′ and multiplication ·′ by taking a representative from the two classes we are
adding, adding or multiply together the representatives, and finding the equivalence class of the answer.
For example we have A ·′ B = B because n · 0 = 0 ∈ B for every n ∈ A, and A ·′ C = C because
m · (−n) = −(mn) ∈ C for every m ∈ A, −n ∈ C. However, addition is not well-defined: when we try
to find A +′ C we could get the answer A (for example by choosing the representatives 8 and −3), B (e.g.
by choosing 6 and −6) or C (e.g. by choosing 5 and −12). The answer we get depends not just on the
classes but on which representative of the classes we choose.

What can we say about arithmetic modulo n? We know that the operations +n and ·n are commutative
and associtive, and ·n distributes over +n. To show the last one, let a, b, c ∈ Z. Then

a ·n (b +n c) = a ·n b + c

= a(b + c)

= ab + ac

= ab +n ac

= a ·n b +n a ·n c.

The commutative and associative laws follow similarly from the commutative laws and associative laws
for Z.
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