
Department of Mathematics

MATHS 255 Lecture outlines for week 3

Monday: Induction

Mathematical Induction [3.1, 3.2]

Mathematical Induction is a process we may use to prove that some statement Pn is true for all natural
numbers n.

Example 1. Find |P({1, 2, . . . , n})| for the first few values of n = 1, 2, 3, . . . and form a conjecture on
what the size of this set is for arbitrary n.

Example 2. Calculate n2 + n + 41 for the first few values of n = 1, 2, 3, . . . and form a conjecture on
whether or not n2 + n + 41 is prime for arbitrary n.

Induction is the process of inferring that something will be true in the future because it has always been
true so far. While this idea may be the best bet for scientific theories, the second example above shows it
cannot be used to prove things mathematically.

A proof by mathematical induction, showing that the statement Pn is true for all n ∈ N, must establish
that

• P1 is true (this is called the base case); and

• for any n ∈ N, if Pn is true then Pn+1 is true (this is called the inductive step, and the hypothesis
Pn of this implication is called the inductive hypothesis).

Example 3. Prove by induction that if n ∈ N then

n∑
i=1

i =
n(n + 1)

2
.

Proof. Let Pn be the statement
∑n

i=1 i = n(n+1)
2 .

Base case: when n = 1 we have
∑1

i=1 i = 1 = 1(1+1)
2 .

Inductive step: Let n ∈ N and suppose that Pn is true. Then

n+1∑
i=1

i =
n∑

i=1

i + (n + 1)

=
n(n + 1)

2
+ n + 1 (by inductive hypothesis)

=
n(n + 1) + 2(n + 1)

2

=
(n + 1)(n + 2)

2

So
∑n+1

i=1 i = (n+1)((n+1)+1)
2 , so Pn+1 is true.
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Hence, by induction, Pn is true for all n ∈ N.

Example 4. Prove by induction that if n ∈ N and A is a set with n elements then P(A) has 2n elements.

Solution. See 3.2.1 and 2.5.7.

Example 5. Find a formula for
∑n

i=1 i2 and show that your formula holds for all n ∈ N.

Tuesday: Further examples of induction

For m, n ∈ Z, we say that m divides n, written m | n, if there is some a ∈ Z with n = ma. For example,
n is even if 2 | n.

Important: don’t mix “m divides n”, which is a statement, with “m divided by n” which is a number.
[The distinction is like the distinction between the statement “Mary is a mother” and the person “Mary’s
mother”.]

Example 6. Prove that for all n ∈ N, 6 | n3 − n.

Example 7. Prove that for all n ∈ N, 3 | 8n − 5n.

Example 8. Show that for all n ∈ N, n < 2n.

Sometimes we wish to show that Pn is true for all n ≥ 2 or for all n ≥ 17 or something. In this case we
make the base case n = 2 or n = 17 instead of n = 1.

Example 9. Suppose a post shop only stocks postage stamps in two denominations: 30 cents and 80
cents. Suppose also that all postage rates are multiples of 10 cents. Show that for any postage rate over
$1.40 we can buy stamps for that rate.

Proof. We are being asked to prove that for every n ∈ N with n ≥ 14 there exist integers m, k ≥ 0 with
3m +8k = n. We prove this by induction on n. So let Pn be the statement that there exist m, k ∈ Z with
m, k ≥ 0 and 3m + 8k = n

Base case: The base case is n = 14. P14 is true because 14 = 2 · 3 + 1 · 8.

Inductive step: Suppose n ≥ 14 and Pn is true. Then there exist m, k ≥ 0 so that n = 3m+8k. If k > 0,
put k′ = k− 1 and m′ = m + 3: then 3m′ + 8k′ = 3(m + 3) + 8(k− 1) = 3m + 8k + 9− 8 = n + 1 as
required. If k = 0 and m > 4, put k′ = k+2 and m′ = m−5: then 3m′ +8k′ = 3(m−5)+8(k+2) =
3m + 8k − 15 + 16 = n + 1, as required. So the only problem occurs if k = 0 and m ≤ 4. But this
cannot happen because then we would have n = 3m + 8k ≤ 12, and we assumed that n ≥ 14.

Thursday: Complete Induction

Complete Induction [3.3]

In the examples considered so far we have deduced Pn+1 from Pn. As an alternative, we may use Complete
Induction. To prove by complete induction that Pn is true for all n ∈ N, we have to prove
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• P1 is true; and

• if Pj is true for all 1 ≤ j < n then Pn+1 is true.

Example 10. Prove that every integer greater than 1 can be written as a product of (one or more) prime
numbers.

Example 11. Prove that every natural number can be written as a sum of distinct powers of 2.

Example 12. Consider the following algorithm. We start with some number n. If n = 1, we stop. If
n = 2k for some k, we replace our value of n with k. Otherwise we replace it with n + 1. For example, if
we start with n = 6 we get the values 6, 7, 8, 3, 4, 2, 1. If we start with n = 28 we get 28, 29, 30, 31, 32,
5, 6, 7, 8, 3, 4, 2, 1.

Prove that whatever natural number we start with, this algorithm will terminate in some finite number of
steps.

Friday: Relations

Relations, ordered pairs and cartesian products

Consider the guests at a party: some of the people know each other, others do not. We could form the set
of all pairs (x, y) such that x knows y’s name. For example, if Mark and Sarah know each other, then we
would include the pair (Mark, Sarah) in our set and also the pair (Sarah, Mark). Note that we are using
round brackets (, ) rather than curly brackets {, } because the order of the elements in the pair matters.
Although {1, 2} = {2, 1}, (1, 2) 6= (2, 1). [Unfortunately, this means that we have two possible meanings
for (x, y) when x, y ∈ R: either the ordered pair of x and y, or the open interval of all z with x < z < y.
We will try to make it clear which one we mean at any given time.]

Returning to the party example, note that we could have a situation where x knows y’s name but y does
not know x’s name, for example if y is someone famous or x is someone forgetful.

Definition. Let A and B be sets. The cartesian product of A and B, A×B, is the set

A×B = { (a, b) : a ∈ A, b ∈ B }.

Example 13. Let A = {1, 2, 3}, B = {a, b}. Find A×A, A×B, B ×A and B ×B.

Definition. Let A and B be sets. A relation from A to B is a subset of A × B. A relation on A is a
subset of A×A.

We often use infix notation for relations: in other words, if ρ is our relation, instead of writing (x, y) ∈ ρ
we write x ρ y, and instead of (x, y) /∈ ρ we write x 6ρ y. We often use the symbol ∼ for a relation on a set
A.

Definition. Let ρ be a relation on a set A. We say that ρ is

• reflexive if for all a ∈ A, a ρ a.

• symmetric if for all a, b ∈ A, if a ρ b then b ρ a.

• antisymmetric if for all a, b ∈ A, if a ρ b and b ρ a then a = b.

• transitive if for all a, b, c ∈ A, if a ρ b and b ρ c then a ρ c.
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Example 14. Let A be the set of people at a party. Let ρ, σ and τ be the following relations: x ρ y if
x knows y’s name; x σ y if x is older than y; and x τ y if x is taller than y. Which, if any, of these
properties are ρ, σ and τ likely to have? Note that the definitions are a bit vague: is it possible for two
different people to be the same age, or the same height? You will have to make some guesses about how
well the people at the party know each other too.

Example 15 (4.1.10). Consider the following relations. Which, if any, of the four properties do these
relations have?

1. A = { p : p is a person in Alaska }, x ∼ y if x is at least as tall as y.

2. A = N, x ∼ y if x + y is even.

3. A = N, x ∼ y if x + y is odd.

4. A = P(N), x ∼ y if x ⊆ y.

5. A = R, x ∼ y if x = 2y.

6. A = R, x ∼ y if x− y is rational.

Example 16. Recall that for m, n ∈ Z, m | n if there is some a ∈ Z with n = ma. Show that | is reflexive
and transitive and not symmetric. Show that | is not antisymmetric on Z but is antisymmetric on N.
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