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MATHS 255 Lecture outlines for week 2

Monday: Existence proofs and counterexamples

Existence proofs [1.9]

To prove something of the form “there is an x such that A(x)”, we do two steps:

• produce a suitable value of x (like pulling a rabbit from a hat)

• show that that particular value of x does what is claimed.

Example 1. Show that there is some x ∈ R such that x2 + 12x− 85 = 0.

Proof. Let x = 5. Then x2 + 12x− 85 = 52 + 12 · 5− 85 = 25 + 60− 85 = 0, as required.

Uniqueness proofs [1.10]

To prove that there is at most one x with the property A(x), we suppose that we have two objects x and
y with A(x) and A(y), and deduce that x = y.

Lemma 2. If x, y ∈ R with x2 + xy + y2 = 0 then x = y = 0.

Proof. Exercise. Hint: x2 + xy + y2 = 3
4 (x + y)2 + 1

4 (x − y)2.

Example 3. Cube roots are unique, in other words if r is a real number then there is at most one x ∈ R
with x3 = r.

Proof. Suppose that x, y ∈ R with x3 = r and y3 = r. Then x3 − y3 = r − r = 0, and x3 − y3 =
(x− y)(x2 + xy + y2). Now, if a, b ∈ R with ab = 0 then a = 0 or b = 0, so x− y = 0 or x2 + xy + y2 = 0.
Now if x− y = 0 then x = y, and if x2 + xy + y2 = 0 then x = y = 0, by the Lemma. So

Examples and counterexamples [1.11]

Remember when we want to prove an implication A(x) =⇒ B(x), we are really proving the statement
(∀x)(A(x) =⇒ B(x)). To show that the implication is not a theorem, we are proving ∼(∀x)(A(x) =⇒
B(x)), i.e. (∃x)(A(x) ∧ ∼B(x)). So what we have to do is give an existence proof. Again, we find an
object x and then demonstrate that it has the properties A(x) and ∼B(x). Such an object is called a
counterexample to the implication A(x) =⇒ B(x).

Example: Exercise 1.11.1
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Tuesday:Sets, subsets, set equality

Sets and Set notation [2.1]

A set is a collection of objects. We write x ∈ A if the object x is in the set, otherwise x /∈ A. We can
specify a set in three ways:

• enumerate the elements, e.g. X = {1, 2, 3}, Y = {1, 3, 5, . . . , 17}, N = {1, 2, 3, . . .}.
• use set builder notation, e.g. X = { x ∈ N : 1 ≤ x ≤ 3 }, Y = {n ∈ N : n is odd and 1 ≤ n ≤ 17 },

N = { x : x is a natural number }.
• Use an indexing set, e.g. Y = { 2n− 1 : n ∈ {1, 2, . . . , 9} }.

Some sets are so important they have their own names, e.g. N, Z, R, Q and intervals such as [a, b], [a, b),
(a, b) and (−∞, b). One other set with a name: the empty set ∅.

Subsets [2.2]

A subset of a set A is a set S with the property that every element of S is also an element of A. We write
S ⊆ A.

Examples: N ⊆ Z, Q ⊆ R. For any set X , ∅ ⊆ X and X ⊆ X .

Important: do not mix up x ∈ A and x ⊆ A.

Notice that S ⊆ A is an implication: “if x ∈ S then x ∈ A”.

Exercise 2.2.4.

A proper subset of a set A is a set S with S ⊆ A and S 6= A. We will sometimes write S ⊂ A in this case.
Warning: some books use S ⊂ A to mean S is a subset of A, not necessarily a proper subset of S.

To say that two sets A and B are equal is to say that they have exactly the same elements, i.e. that
A ⊆ B and B ⊆ A. So to prove that two sets are equal, we have to prove two implications.

Example: to show that { x ∈ R : x2 + 12x− 85 = 0 } = {5,−17} we have to prove two implications:

• if x ∈ R with x2 + 12x− 85 = 0 then x = 5 or x = −17; and

• if x = 5 or x = −17 then x ∈ R with x2 + 12x− 85 = 0.

Thursday: Set operations

Complement, intersection and union [2.3]

Given a set U (which we call a universal set) and a set S ⊆ U , we define the complement of S in U to be
SCU . If U is fixed and understood, we may simply write SC and refer to the complement of S.
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Example (exercise 2.3.2 and 2.3.3). Put S = [−5, 2], U = [−5, 5]. Find SCU and SCR.

Definition: if A and B are sets then the intersection of A and B is A ∩B = { x : x ∈ A∧ x ∈ B } and the
union of A and B is { x : x ∈ A ∨ x ∈ B }.

Example (exercise 2.3.5): let A = {a, b, c, d, e, f, g}, B = {a, e, i, o, u}. Find A ∩B and A ∪B.

We may use Venn diagrams to illustrate these.

Set identities [2.4]

Recall that to show that two sets are equal we have to prove two implications.

Example 4. Let A and B be sets. Show that A ∩ (A ∪B) = A.

Proof. Let x ∈ A ∩ (A ∪B). Then . . . so x ∈ A.

Conversely, let y ∈ A. Then . . . so y ∈ A ∩ (A ∪B).

Example (Theorem 2.4.2): for any sets A, B and C we have A ∪ (B ∩ C) = A ∪B) ∩ (A ∪ C).

Set operations with indexing sets

Suppose we have a set Λ, and for each α ∈ Λ we have a set Uα. Then we may form the union of all these
sets and (provided Λ 6= ∅) the intersection of all these sets. We define the union to be⋃

α∈Λ

Uα = { x : x ∈ Uα for at least one α ∈ Λ }

and the intersection to be ⋂
α∈Λ

Uα = { x : x ∈ Uα for every α ∈ Λ }.

Example: for each n ∈ N let In = [0, 1
n ]. Find

⋂
n∈N In and

⋃
n∈N In.

Example: find
⋂

n∈Z[n, n + 1] and
⋃

n∈N[n, n + 1].

Friday: The power set

Exercise: list all the subsets of {1, 2, 3}.

The collection of all subsets of a set A is called the power set of A, written P(A). So we have S ∈ P(A)
if and only if S ⊆ A.

Example 5 (Theorem 2.5.4). Show that if A and B are sets then A ⊆ B if and only if P(A) ⊆ P(B).

Example 6 (Theorem 2.5.5). Let A and B be sets. Show that P(A ∩B) = P(A) ∩ P(B).

Example 7. Let A and B be sets. Show that P(A) ∪ P(B) ⊆ P(A ∪B). Find an example of sets A and
B such that P(A) ∪ P(B) ⊂ P(A ∪B)
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