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MATHS 255 Lecture outlines for week 12

Monday: Differentiability

In today’s lecture we will learn exactly what it means for a function to be differentiable. Before
doing that, we will find a little more about limits.

Limits of products and quotients

Theorem 1. Let A ⊆ R, let f, g : A → R be functions, and let c be an accumulation point
of A. If limx→c f(x) and limx→c g(x) both exist then limx→c f(x)g(x) exists and is equal to
limx→c f(x) limx→c g(x).

Proof. Let F = limx→c f(x) and G = limx→c g(x). Put η = ε
|G|+ 1

2
+|F | . Choose δ1δ2 > 0 so that if

0 < |x− c| < δ1 then |f(x)−F | < η and if x ∈ A with 0 < |x− c| < δ2 then |g(x)−G| < min{η, 1
2}.

Note that if x ∈ A with 0 < |x− c| < δ2 then |g(x)−G| < 1
2 so |g(x) < |G|+ 1

2 . Put δ = min{δ1, δ2}.
Let x ∈ A with 1 < |x− c| < δ. Then

|f(x)g(x) − FG| = |f(x)g(x) − Fg(x) + Fg(x) − FG|
≤ |f(x)g(x) − Fg(x)| + |Fg(x) − FG| (triangle inequality)
= |f(x)− F ||g(x)| + |F ||g(x) −G|
≤ η(|G| + 1

2
) + |F |η

= ε

Thus limx→c f(x)g(x) exists and equals FG.

Note that we might be a little lazy and write this as “limx→c f(x)g(x) = limx→c f(x) limx→c g(x)”.
However, we must remember that limits need not exist, and the existence of the limit is part of
the assertion. Also the converse does not hold: it is quite possible for limx→c f(x)g(x) but neither
limx→c f(x) nor limx→c g(x) to exist.

Theorem 2. Let A ⊆ R, let f : A → R be a function, and let c be an accumulation point of A. If
limx→c f(x) exists and is non-zero then limx→c

1
f(x) exists and is equal to 1

limx→c f(x) .

Proof. Exercise. Note that we need to choose δ small enough to ensure that f(x) is non-zero within
a distance of δ from c: in fact we will want to ensure that 1

f(x) does not get too large—say, does
not get larger than 2F where F = limx→c f(x)—so we will choose δ small enough to ensure that
|f(x)−F | < F

2 , which ensures that |f(x)| > |F − F
2 |. See the proof that if bn → B 6= 0 then 1

bn
→ 1

B
in the notes for week 11 for more ideas.
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Exercise 3. Let A ⊆ R, let f, g : A → R be functions, and let c be an accumulation point of A. If
limx→c f(x) and limx→c g(x) both exist then limx→c f(x) + g(x) exists and is equal to limx→c f(x) +
limx→c g(x).

Differentiability

Definition. Let A ⊆ R. If c ∈ A, we say that c is an interior point of A if there is some ε > 0
such that Bε(c) ⊆ A. We denote the set of interior points of A by int(A).

Thus A is open if and only if every point of A is an interior point of A, i.e. if A = int(A).

Definition. Let A ⊆ R, let f : A → R be a function and let c ∈ int(A). We say that f is
differentiable at c if limx→c

f(x)−f(c)
x−c exists, or equivalently if limh→0

f(c+h)−f(c)
h exists. If the limit

exists, we denote it by f ′(c), and call this number the derivative of f at c. For S ⊆ int(A) we say
that f is differentiable on S if f is differentiable at all c ∈ S. When A is open we say that f is
differentiable if it is differentiable on A.

Example 4. Define f : R → R by f(x) = x2. Then f is differentiable and, for all c ∈ R, f ′(c) = 2c.

Proof. For all h 6= 0 we have

f(c + h)− f(c)
h

=
(c + h)2 − c2

h

=
c2 + 2ch + h2 − c2

h

=
2ch + h

h
= 2c + h

Now limh→0 2c + h = 2c, so f ′(c) exists and equals 2c, as required.

Theorem 5. Let A ⊆ R, let f : A → R be a function and let c ∈ int(A). If f is differentiable at c
then f is continuous at c.

Proof. Suppose f is differentiable at c. Then limx→c
f(x)−f(c)

x−c exists and equals f ′(c). We also

have limx→c(x− c) exists and equals 0. So by Theorem 1, limx→c
f(x)−f(c)

x−c (x− c) exists and equals
f ′(c) · 0 = 0. So limx→c(f(x)− f(c) = 0, so limx→c f(x) = f(c), so f is continuous at c.
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Tuesday: Rolle’s Theorem and the Mean Value Theorem

Lemma 6. Let a, b ∈ R with a < b, and let f : [a, b] → R be continuous. Then f is bounded and
attains its bounds. In other words, there exist c, d ∈ [a, b] with f(c) = max{ f(x) : x ∈ [a, b] } and
f(d) = min{ f(x) : x ∈ [a, b] }.

Proof. First we will show that f is bounded. Suppose, for a contradiction, that f is unbounded
above. For each n ∈ N we can find some xn ∈ [a, b] with f(xn) > n. Now the sequence (xn) is
bounded, so it has a convergent subsequence, (xin) say. Let x be the limit of this subsequence. Since
(xn) is a sequence in [a, b], which is closed, we have x ∈ [a, b]. But then f(xin) converges to f(x),
which is impossible because (f(xin)) is an unbounded sequence.

Similarly, f is bounded below.

Put s = sup{ f(x) : x ∈ [a, b] }. For every n, there is some yn ∈ [a, b] with s − 1
n < f(yn) ≤ s.

Then (yn) is a bounded sequence in [a, b], so it has a subsequence (yjn) which converges to some
c ∈ [a, b]. By continuity, (f(yj,n)) converges to f(c). But, by construction, (f(yjn) converges to s.
So f(c) = s = sup{ f(x) : x ∈ [a, b] }. So f(c) = max{ f(x) : x ∈ [a, b] }.

Similarly, f attains its infimum.

Definition. Let A ⊆ R, let f : A → R be a function and let a ∈ A. Then a is a local maximum of
f if there is some ε > 0 such that for all x ∈ A with |x − a| < ε we have f(x) ≤ f(a). Similarly,
a is a local minimum of f if there is some ε > 0 such that for all x ∈ A with |x − a| < ε we have
f(x) ≥ f(a).

Theorem 7. Let A ⊆ R, let f : A → R be a function and let a ∈ int A. If f ′(a) exists and a is a
local maximum or local minimum of f then f ′(a) = 0.

Proof. Exercise.

Note that we need both f ′(a) exists and a ∈ int(A) as hypotheses here: consider the examples
f : [0, 1] → R given by f(x) = x, which has 1 as a local maximum, and g : R → R given by
g(x) = |x| which has 0 as a local minimum.

Theorem 8 (Rolle’s Theorem). Let a, b ∈ R with a < b. Let f : [a, b] → R be continuous, and
differentiable on (a, b). Suppose f(a) = f(b). Then there is some c ∈ (a, b) with f ′(c) = 0.

Proof. Put k = f(a) = f(b). We know that f is continuous on [a, b] so it attains its maximum at
some c ∈ [a, b]. Suppose first that c 6= a and c 6= b. Then c ∈ (a, b), so c is a local maximum of f ,
and f ′(c) exists, so by the previous result we must have f ′(c) = 0.

Similarly, we know that f attains its minimum at some d ∈ [a, b], and if d 6= a, b then d ∈ (a, b) and
f ′(d) = 0.
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The only remaining possibility is that c, d ∈ {a, b}. But then we must have f(x) = k for all x ∈ [a, b],
so f ′(x) = 0 for all x ∈ (a, b).

Theorem 9 (Mean Value Theorem). Let a, b ∈ R with a < b and let f : [a, b] → R be continuous,
and differentiable on (a, b). Then there is some c ∈ (a, b) with f ′(c) = f(b)−f(a)

b−a .

Proof. Put k = f(b)−f(a)
b−a and define g : [a, b] → R by g(x) = f(x) − kx. Then g is continuous on

[a, b] and differentiable on (a, b), with g′(x) = f ′(x)− k. Also

g(b) − g(a) = f(b)− kb− f(a)− ka

= (f(b)− f(a))− k(b− a)

= (f(b)− f(a))− f(b)− f(a)
b− a

(b− a)

= 0,

so g(a) = g(b). Hence by Rolle’s Theorem there is some c ∈ (a, b) with g′(c) = 0. But then
f ′(c) − k = 0, so f ′(c) = k, as required.
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