Monday: Differentiability

In today's lecture we will learn exactly what it means for a function to be differentiable. Before doing that, we will find a little more about limits.

Limits of products and quotients

Theorem 1. Let $A \subseteq \mathbb{R}$, let $f, g : A \to \mathbb{R}$ be functions, and let c be an accumulation point of A. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist then $\lim_{x\to c} f(x)g(x)$ exists and is equal to $\lim_{x\to c} f(x)\lim_{x\to c} g(x)$.

Proof. Let $F = \lim_{x \to c} f(x)$ and $G = \lim_{x \to c} g(x)$. Put $\eta = \frac{\varepsilon}{|G| + \frac{1}{2} + |F|}$. Choose $\delta_1 \delta_2 > 0$ so that if $0 < |x - c| < \delta_1$ then $|f(x) - F| < \eta$ and if $x \in A$ with $0 < |x - c| < \delta_2$ then $|g(x) - G| < \min\{\eta, \frac{1}{2}\}$. Note that if $x \in A$ with $0 < |x - c| < \delta_2$ then $|g(x) - G| < \frac{1}{2}$ so $|g(x) < |G| + \frac{1}{2}$. Put $\delta = \min\{\delta_1, \delta_2\}$. Let $x \in A$ with $1 < |x - c| < \delta$. Then

$$\begin{split} |f(x)g(x)-FG| &= |f(x)g(x)-Fg(x)+Fg(x)-FG|\\ &\leq |f(x)g(x)-Fg(x)|+|Fg(x)-FG|\\ &= |f(x)-F||g(x)|+|F||g(x)-G|\\ &\leq \eta(|G|+\frac{1}{2})+|F|\eta\\ &=\varepsilon \end{split}$$
 (triangle inequality)

Thus $\lim_{x\to c} f(x)g(x)$ exists and equals FG.

Note that we might be a little lazy and write this as " $\lim_{x\to c} f(x)g(x) = \lim_{x\to c} f(x)\lim_{x\to c} g(x)$ ". However, we must remember that limits need not exist, and the existence of the limit is part of the assertion. Also the converse does not hold: it is quite possible for $\lim_{x\to c} f(x)g(x)$ but neither $\lim_{x\to c} f(x)$ nor $\lim_{x\to c} g(x)$ to exist.

Theorem 2. Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function, and let c be an accumulation point of A. If $\lim_{x\to c} f(x)$ exists and is non-zero then $\lim_{x\to c} \frac{1}{f(x)}$ exists and is equal to $\frac{1}{\lim_{x\to c} f(x)}$.

Proof. Exercise. Note that we need to choose δ small enough to ensure that f(x) is non-zero within a distance of δ from c: in fact we will want to ensure that $\frac{1}{f(x)}$ does not get too large—say, does not get larger than 2F where $F = \lim_{x \to c} f(x)$ —so we will choose δ small enough to ensure that $|f(x) - F| < \frac{F}{2}$, which ensures that $|f(x)| > |F - \frac{F}{2}|$. See the proof that if $b_n \to B \neq 0$ then $\frac{1}{b_n} \to \frac{1}{B}$ in the notes for week 11 for more ideas.

Exercise 3. Let $A \subseteq \mathbb{R}$, let $f, g : A \to \mathbb{R}$ be functions, and let c be an accumulation point of A. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist then $\lim_{x\to c} f(x) + g(x)$ exists and is equal to $\lim_{x\to c} f(x) + \lim_{x\to c} g(x)$.

Differentiability

Definition. Let $A \subseteq \mathbb{R}$. If $c \in A$, we say that c is an interior point of A if there is some $\varepsilon > 0$ such that $B_{\varepsilon}(c) \subseteq A$. We denote the set of interior points of A by int(A).

Thus A is open if and only if every point of A is an interior point of A, i.e. if A = int(A).

Definition. Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function and let $c \in \text{int}(A)$. We say that f is differentiable at c if $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists, or equivalently if $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$ exists. If the limit exists, we denote it by f'(c), and call this number the derivative of f at c. For $S \subseteq \text{int}(A)$ we say that f is differentiable on S if f is differentiable at all $c \in S$. When A is open we say that f is differentiable if it is differentiable on A.

Example 4. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Then f is differentiable and, for all $c \in \mathbb{R}$, f'(c) = 2c.

Proof. For all $h \neq 0$ we have

$$\frac{f(c+h) - f(c)}{h} = \frac{(c+h)^2 - c^2}{h}$$

$$= \frac{c^2 + 2ch + h^2 - c^2}{h}$$

$$= \frac{2ch + h}{h}$$

$$= 2c + h$$

Now $\lim_{h\to 0} 2c + h = 2c$, so f'(c) exists and equals 2c, as required.

Theorem 5. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be a function and let $c \in \text{int}(A)$. If f is differentiable at c then f is continuous at c.

Proof. Suppose f is differentiable at c. Then $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists and equals f'(c). We also have $\lim_{x\to c} (x-c)$ exists and equals 0. So by Theorem 1, $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}(x-c)$ exists and equals $f'(c)\cdot 0=0$. So $\lim_{x\to c} (f(x)-f(c))=0$, so $\lim_{x\to c} f(x)=f(c)$, so f is continuous at c.

Tuesday: Rolle's Theorem and the Mean Value Theorem

Lemma 6. Let $a, b \in \mathbb{R}$ with a < b, and let $f : [a, b] \to \mathbb{R}$ be continuous. Then f is bounded and attains its bounds. In other words, there exist $c, d \in [a, b]$ with $f(c) = \max\{f(x) : x \in [a, b]\}$ and $f(d) = \min\{f(x) : x \in [a, b]\}$.

Proof. First we will show that f is bounded. Suppose, for a contradiction, that f is unbounded above. For each $n \in \mathbb{N}$ we can find some $x_n \in [a,b]$ with $f(x_n) > n$. Now the sequence (x_n) is bounded, so it has a convergent subsequence, (x_{i_n}) say. Let x be the limit of this subsequence. Since (x_n) is a sequence in [a,b], which is closed, we have $x \in [a,b]$. But then $f(x_{i_n})$ converges to f(x), which is impossible because $(f(x_{i_n}))$ is an unbounded sequence.

Similarly, f is bounded below.

Put $s = \sup\{f(x) : x \in [a,b]\}$. For every n, there is some $y_n \in [a,b]$ with $s - \frac{1}{n} < f(y_n) \le s$. Then (y_n) is a bounded sequence in [a,b], so it has a subsequence (y_{j_n}) which converges to some $c \in [a,b]$. By continuity, $(f(y_{j_n}))$ converges to f(c). But, by construction, $(f(y_{j_n}))$ converges to s. So $f(c) = s = \sup\{f(x) : x \in [a,b]\}$. So $f(c) = \max\{f(x) : x \in [a,b]\}$.

Similarly, f attains its infimum.

Definition. Let $A \subseteq \mathbb{R}$, let $f: A \to \mathbb{R}$ be a function and let $a \in A$. Then a is a local maximum of f if there is some $\varepsilon > 0$ such that for all $x \in A$ with $|x - a| < \varepsilon$ we have $f(x) \le f(a)$. Similarly, a is a local minimum of f if there is some $\varepsilon > 0$ such that for all $x \in A$ with $|x - a| < \varepsilon$ we have $f(x) \ge f(a)$.

Theorem 7. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be a function and let $a \in \text{int } A$. If f'(a) exists and a is a local maximum or local minimum of f then f'(a) = 0.

Proof. Exercise. \Box

Note that we need both f'(a) exists and $a \in \text{int}(A)$ as hypotheses here: consider the examples $f:[0,1] \to \mathbb{R}$ given by f(x)=x, which has 1 as a local maximum, and $g:\mathbb{R} \to \mathbb{R}$ given by g(x)=|x| which has 0 as a local minimum.

Theorem 8 (Rolle's Theorem). Let $a, b \in \mathbb{R}$ with a < b. Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b). Suppose f(a) = f(b). Then there is some $c \in (a, b)$ with f'(c) = 0.

Proof. Put k = f(a) = f(b). We know that f is continuous on [a, b] so it attains its maximum at some $c \in [a, b]$. Suppose first that $c \neq a$ and $c \neq b$. Then $c \in (a, b)$, so c is a local maximum of f, and f'(c) exists, so by the previous result we must have f'(c) = 0.

Similarly, we know that f attains its minimum at some $d \in [a, b]$, and if $d \neq a, b$ then $d \in (a, b)$ and f'(d) = 0.

The only remaining possibility is that $c, d \in \{a, b\}$. But then we must have f(x) = k for all $x \in [a, b]$, so f'(x) = 0 for all $x \in (a, b)$.

Theorem 9 (Mean Value Theorem). Let $a, b \in \mathbb{R}$ with a < b and let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b). Then there is some $c \in (a, b)$ with $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Proof. Put $k = \frac{f(b) - f(a)}{b - a}$ and define $g : [a, b] \to \mathbb{R}$ by g(x) = f(x) - kx. Then g is continuous on [a, b] and differentiable on (a, b), with g'(x) = f'(x) - k. Also

$$g(b) - g(a) = f(b) - kb - f(a) - ka$$

$$= (f(b) - f(a)) - k(b - a)$$

$$= (f(b) - f(a)) - \frac{f(b) - f(a)}{b - a}(b - a)$$

$$= 0.$$

so g(a) = g(b). Hence by Rolle's Theorem there is some $c \in (a,b)$ with g'(c) = 0. But then f'(c) - k = 0, so f'(c) = k, as required.