Monday: Differentiability

In today's lecture we will learn exactly what it means for a function to be differentiable. Before doing that, we will find a little more about limits. α , we will find a little more about limits.

\mathcal{L} and \mathcal{L} products and \mathcal{L} and \mathcal{L}

Theorem 1. Let $A \subseteq \mathbb{R}$, let $f, g : A \to \mathbb{R}$ be functions, and let c be an accumulation point of A. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist then $\lim_{x\to c} f(x)g(x)$ exists and is equal to $\lim_{x\to c} f(x) \lim_{x\to c} g(x)$.

Proof. Let $F = \lim_{x \to c} f(x)$ and $G = \lim_{x \to c} g(x)$. Put $\eta = \frac{\varepsilon}{|G| + \frac{1}{2} + |F|}$. Choose $\delta_1 \delta_2 > 0$ so that if $0 < |x - c| < \delta_1$ then $|f(x) - F| < \eta$ and if $x \in A$ with $0 < |x - c| < \delta_2$ then $|g(x) - G| < \min\{\eta, \frac{1}{2}\}\$.
Note that if $x \in A$ with $0 < |x - c| < \delta_2$ then $|g(x) - G| < \frac{1}{2}$ so $|g(x) - G| < \frac{1}{2}$. But $\delta = \min\{\delta_1, \delta_2\}$. Note that if $x \in A$ with $0 < |x-c| < \delta_2$ then $|g(x)-G| < \frac{1}{2}$ so $|g(x)| < |G| + \frac{1}{2}$. Put $\delta = \min{\delta_1, \delta_2}$.
Let $x \in A$ with $1 < |x-c| < \delta$. Then Let $x \in A$ with $1 < |x - c| < \delta$. Then

$$
|f(x)g(x) - FG| = |f(x)g(x) - Fg(x) + Fg(x) - FG|
$$

\n
$$
\leq |f(x)g(x) - Fg(x)| + |Fg(x) - FG|
$$
 (triangle inequality)
\n
$$
= |f(x) - F||g(x)| + |F||g(x) - G|
$$

\n
$$
\leq \eta(|G| + \frac{1}{2}) + |F|\eta
$$

\n
$$
= \varepsilon
$$

Thus $\lim_{x\to c} f(x)g(x)$ exists and equals FG.

Note that we might be a little lazy and write this as " $\lim_{x\to c} f(x)g(x) = \lim_{x\to c} f(x)\lim_{x\to c} g(x)$ ".
However, we must remember that limits need not exist, and the existence of the limit is part of the assertion. Also the converse does not hold: it is quite possible for $\lim_{x\to c} f(x)g(x)$ but neither $f(x)$ por limit $g(x)$ to exist $\lim_{x\to c} f(x)$ nor $\lim_{x\to c} g(x)$ to exist.

Theorem 2. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be a function, and let c be an accumulation point of A. If $\lim_{x\to c} f(x)$ exists and is non-zero then $\lim_{x\to c} \frac{1}{f(x)}$ exists and is equal to $\frac{1}{\lim_{x\to c} f(x)}$.

Proof. Exercise. Note that we need to choose δ small enough to ensure that $f(x)$ is non-zero within a distance of δ from c: in fact we will want to ensure that $\frac{1}{f(x)}$ does not get too large—say, does not get larger than $2F$ where $F = \lim_{x\to c} f(x)$ —so we will choose δ small enough to ensure that $|f(x)-F| < \frac{F}{2}$, which ensures that $|f(x)| > |F-\frac{F}{2}|$. See the proof that if $b_n \to B \neq 0$ then $\frac{1}{b_n} \to \frac{1}{B}$ in the notes for week 11 for more ideas.

 \Box

Exercise 3. Let $A \subseteq \mathbb{R}$, let $f, g : A \to \mathbb{R}$ be functions, and let c be an accumulation point of A. If $\lim_{x\to c} f(x)$ and $\lim_{x\to c} g(x)$ both exist then $\lim_{x\to c} f(x) + g(x)$ exists and is equal to $\lim_{x\to c} f(x) + g(x)$ $\lim_{x\to c} g(x)$.

Differentiability

Definition. Let $A \subseteq \mathbb{R}$. If $c \in A$, we say that c is an interior point of A if there is some $\varepsilon > 0$ such that $B_{\varepsilon}(c) \subseteq A$. We denote the set of interior points of A by int(A).

Thus A is open if and only if every point of A is an interior point of A, i.e. if $A = \text{int}(A)$.

Definition. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be a function and let $c \in \text{int}(A)$. We say that f is differentiable at c if $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists, or equivalently if $\lim_{h\to 0} \frac{f(c+h)-f(c)}{h}$
exists, we denote it by $f'(c)$ and call this number the derivative of f at c. For exists, we denote it by $f'(c)$, and call this number the derivative of f at c. For $S \subseteq \text{int}(A)$ we say
that f is differentiable on S if f is differentiable at all $c \in S$. When A is onen we say that f is that f is differentiable on S if f is differentiable at all $c \in S$. When A is open we say that f is differentiable if it is differentiable on ^A.

Example 4. Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^2$. Then f is differentiable and, for all $c \in \mathbb{R}$, $f'(c) = 2c$.

Proof. For all $h \neq 0$ we have

$$
\frac{f(c+h) - f(c)}{h} = \frac{(c+h)^2 - c^2}{h}
$$

$$
= \frac{c^2 + 2ch + h^2 - c^2}{h}
$$

$$
= \frac{2ch + h}{h}
$$

$$
= 2c + h
$$

Now $\lim_{h\to 0} 2c + h = 2c$, so $f'(c)$ exists and equals 2c, as required.

Theorem 5. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be a function and let $c \in \text{int}(A)$. If f is differentiable at c then f is continuous at c .

Proof. Suppose f is differentiable at c. Then $\lim_{x\to c} \frac{f(x)-f(c)}{x-c}$ exists and equals $f'(c)$. We also have $\lim_{x\to c}(x-c)$ exists and equals 0. So by Theorem 1, $\lim_{x\to c}\frac{f(x)-f(c)}{x-c}(x-c)$ exists and equals $f'(c) \cdot 0 = 0$. So $\lim_{x\to c} f(c) = 0$ so $\lim_{x\to c} f'(c) = f(c)$ so f is continuous at c $f'(c) \cdot 0 = 0$. So $\lim_{x \to c} (f(x) - f(c) = 0$, so $\lim_{x \to c} f(x) = f(c)$, so f is continuous at c.

 \Box

Tuesday: Rolle's Theorem and the Mean Value Theorem

Lemma 6. Let $a, b \in \mathbb{R}$ with $a < b$, and let $f : [a, b] \to \mathbb{R}$ be continuous. Then f is bounded and attains its bounds. In other words, there exist $c, d \in [a, b]$ with $f(c) = \max\{f(x) : x \in [a, b]\}\$ and $f(d) = \min\{f(x) : x \in [a, b]\}.$

Proof. First we will show that f is bounded. Suppose, for a contradiction, that f is unbounded above. For each $n \in \mathbb{N}$ we can find some $x_n \in [a, b]$ with $f(x_n) > n$. Now the sequence (x_n) is bounded, so it has a convergent subsequence, (x_{i_n}) say. Let x be the limit of this subsequence. Since (x_n) is a sequence in [a, b], which is closed, we have $x \in [a, b]$. But then $f(x_{i_n})$ converges to $f(x)$, which is impossible because $(f(x_{i_n}))$ is an unbounded sequence.

Similarly, f is bounded below.

Put $s = \sup\{f(x) : x \in [a, b]\}.$ For every n, there is some $y_n \in [a, b]$ with $s - \frac{1}{n} < f(y_n) \leq s$.
Then (y_n) is a bounded sequence in [a, b] so it has a subsequence (y_n) which converges to some Then (y_n) is a bounded sequence in [a, b], so it has a subsequence (y_{j_n}) which converges to some $c \in [a, b]$. By continuity, $(f(y_{j,n}))$ converges to $f(c)$. But, by construction, $(f(y_{j,n}))$ converges to s. So $f(c) = s = \sup\{f(x) : x \in [a, b]\}\$. So $f(c) = \max\{f(x) : x \in [a, b]\}\$.

Similarly, ^f attains its infimum.

Definition. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Then a is a local maximum of f if there is some $\varepsilon > 0$ such that for all $x \in A$ with $|x - a| < \varepsilon$ we have $f(x) \le f(a)$. Similarly, a is a local minimum of f if there is some $\varepsilon > 0$ such that for all $x \in A$ with $|x - a| < \varepsilon$ we have $f(x) \geq f(a)$.

Theorem 7. Let $A \subseteq \mathbb{R}$, let $f : A \to \mathbb{R}$ be a function and let $a \in \text{int } A$. If $f'(a)$ exists and a is a local maximum or local minimum of f then $f'(a) = 0$ local maximum or local minimum of f then $f'(a) = 0$.

Proof. Exercise.

Note that we need both $f'(a)$ exists and $a \in \text{int}(A)$ as hypotheses here: consider the examples $f : [0, 1] \to \mathbb{R}$ given by $f(x) = x$ which has 1 as a local maximum, and $a : \mathbb{R} \to \mathbb{R}$ given by $f : [0,1] \to \mathbb{R}$ given by $f(x) = x$, which has 1 as a local maximum, and $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = |x|$ which has 0 as a local minimum.

Theorem 8 (Rolle's Theorem). Let $a, b \in \mathbb{R}$ with $a < b$. Let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b) . Suppose $f(a) = f(b)$. Then there is some $c \in (a, b)$ with $f'(c) = 0$.

Proof. Put $k = f(a) = f(b)$. We know that f is continuous on [a, b] so it attains its maximum at some $c \in [a, b]$. Suppose first that $c \neq a$ and $c \neq b$. Then $c \in (a, b)$, so c is a local maximum of f, and $f'(c)$ exists, so by the previous result we must have $f'(c) = 0$.

Similarly, we know that f attains its minimum at some $d \in [a, b]$, and if $d \neq a, b$ then $d \in (a, b)$ and $f'(d) = 0.$

 \Box

 \Box

The only remaining possibility is that $c, d \in \{a, b\}$. But then we must have $f(x) = k$ for all $x \in [a, b]$, so $f'(x) = 0$ for all $x \in (a, b)$. so $f'(x) = 0$ for all $x \in (a, b)$.

Theorem 9 (Mean Value Theorem). Let $a, b \in \mathbb{R}$ with $a < b$ and let $f : [a, b] \to \mathbb{R}$ be continuous, and differentiable on (a, b) . Then there is some $c \in (a, b)$ with $f'(c) = \frac{f(b)-f(a)}{b-a}$.

Proof. Put $k = \frac{f(b)-f(a)}{b-a}$ and define $g : [a, b] \to \mathbb{R}$ by $g(x) = f(x) - kx$. Then g is continuous on $[a, b]$ and differentiable on (a, b) with $g'(x) = f'(x) - k$. Also [a, b] and differentiable on (a, b) , with $g'(x) = f'(x) - k$. Also

$$
g(b) - g(a) = f(b) - kb - f(a) - ka
$$

= $(f(b) - f(a)) - k(b - a)$
= $(f(b) - f(a)) - \frac{f(b) - f(a)}{b - a}(b - a)$
= 0,

so $g(a) = g(b)$. Hence by Rolle's Theorem there is some $c \in (a, b)$ with $g'(c) = 0$. But then $f'(c) = b = 0$ so $f'(c) = b$ as required $f'(c) - k = 0$, so $f'(c) = k$, as required.