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MATHS 255 Lecture outlines for week 10

Monday: The Real Numbers

In this final section of the course we will study the real numbers. You are already familiar with
a number of theorems about the real numbers: rules for nth root test for determining whether a
series converges, the mean value theorem, and so on. We will be learning how to prove theorems
like these.

Of course, the first thing we have to do is to establish our assumptions, or axioms, and agree that
(at least in principle) everything we prove about the real numbers should come only from these
axioms and not from any pictures we have of how the real numbers look and behave. We will give
axioms which say that the real numbers are a complete, ordered field. There are lots of examples of
fields, some of which are ordered fields. However, we will see that there is, up to isomorphism, only
one complete ordered field. By “up to isomorphism”, we mean that if R and S are both complete
ordered fields, then there is an isomorphism from R to S. In fact, in this case we can do even better:
not only is there at least one isomorphism from R to S, but that isomorphism is unique.

The field axioms [8.2]

Definition. A field is a set F equipped with two binary operations, addition + and multiplication
· (as usual, we often omit the · and write x · y as xy) and distinct elements 0F and 1F with the
properties that

• + and · are associative and commutative operations on F ;

• 0F is an identity for + and 1F is an identity for ·;
• · distributes over +, i.e. for all x, y, z ∈ F we have x(y + z) = xy + xz;

• every x ∈ F has an additive inverse −x; and

• every x ∈ F \ {0F } has a multiplicative inverse 1
x .

Example 1. The real numbers R, with the usual addition, multiplication, 0 and 1, form a field.

Example 2. Let F = {E,O}, with + and · defined by the Cayley Tables

+ E O

E E O
O O E

and
· E O

E E E
O E O

(Note: it may help to think of E and O as “even” and “odd” respectively). Then F is a field, with
0F being the element E and 1F being the element O.
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Exercise 3. In the previous example, what are −E, −O and 1
O?

Example 4. Let p be a prime number. Then Zp is a field, with + and · being +p and ·p respectively,
and 0F and 1F beling 0 and 1 respectively.

Exercise 5. Write up the Cayley Tables for +7 and ·7. For each n with 0 ≤ n ≤ 6 identify −n and
for each n with 1 ≤ n ≤ 6 identify 1

n .

Just as when we wrote down axioms for Z and N, we can deduce many familiar facts about a field
from these axioms.

Proposition 6. Let F be a field. For every x ∈ F we have 0F x = 0F and −(−x) = x.

However, the field axioms do not allow us to prove the familiar fact that for all x 6= 0F we have
x 6= −x.

Finally, a little notation: if F is a field and x, y ∈ F , we write x− y for x + (−y), and x ÷ y or x
y

for x · 1
y .

Tuesday: The Order Axioms for R

Axioms for an ordered field [8.3]

Definition. An ordered field is a field F with a subset P such that

• if x, y ∈ P then x + y ∈ P and xy ∈ P ;

• for all x ∈ F , exactly one of the following holds:

◦ x ∈ P ; or

◦ x = 0F ; or

◦ −x ∈ P .

We will see shortly why we use the term “ordered” (and why we use the letter P ). First, we will
see some consequences of these axioms.

Proposition 7. Let F be an ordered field. Then for all x ∈ F \ {0F }, x 6= −x.

Proposition 8. Let F be an ordered field. Then for all x ∈ F \ {0F }, x2 ∈ P . In particular,
1F ∈ P .

Proposition 9. The field Zp (for p a prime number) is not an ordered field, in other words there
is no subset P of Zp which satisfies the ordered field axioms.

Example 10. The real numbers are an ordered field, with P = {x ∈ R : x > 0 }.
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Proposition 11. Let F be an ordered field. Define relations < and ≤ on F by declaring that, for
x, y ∈ F , x < y iff y − x ∈ P , and x ≤ y iff x < y ∨ x = y. Then ≤ is a total order on F .

Whenever we have an ordered field F , we will always assume < and ≤ are the relations defined in
the above proposition.

Proposition 12. Let F be an ordered field. Let a, b, c, d ∈ F .

1. If a < b then a + c < b + c.

2. If a ≤ b then a + c ≤ b + c.

3. If a < b and 0F < c then ac < bc.

4. If 0F < a < b then 0F < 1
b < 1

a .

Example 13. The rational numbers Q are an ordered field, with the usual +, ·, 0 and 1, and with
P = { q ∈ Q : q > 0 }.

Thursday: Completeness

The ordered field axioms are not yet enough to characterise the real numbers, as there are other
examples of ordered fields besides the real numbers. The most familiar of these is the set of rational
numbers. The final axiom we give is the completeness axiom, which is satisfied by R but not by Q.

Definition. A complete ordered field is an ordered field F with the least upper bound property (in
other words, with the property that if S ⊆ F , S 6= ∅ and S is bounded above then S has a least upper
bound supS).

Example 14. The real numbers are a complete ordered field.

We will see in a moment that the rational numbers are not complete.

Lemma 15. Let F be a complete ordered field, and let S ⊆ F , x ∈ F . Then TFAE:

• x = supS

• x is an upper bound for S and, for each ε ∈ F with ε > 0F there is some s ∈ S with
x− ε < s ≤ x.

Proposition 16 (The Archimedean property of R). For every x ∈ R there is some n ∈ N with
n > x.

Proof. Let x ∈ R. Suppose, for a contradiction, that there is no n ∈ N with n > x. Then, since
≤ is a total order, we have n ≤ x for all n ∈ N. Thus N is bounded above. We also have N 6= ∅,
so N must have a least upper bound, s. Since s = sup N and 1 > 0, there is some n ∈ N with
s− 1 < n ≤ s. But then s < n + 1, so n + 1 � s. However, n + 1 ∈ N and s is an upper bound for N
so n + 1 ≤ s. This contradiction shows that there must be some n ∈ N with n > x, as required.
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Proposition 17. There is some real number a with a2 = 2.

Proof. Let S = {x ∈ R : x2 < 2 }.

Claim: S 6= ∅.
For: 02 = 0 < 2, so 0 ∈ S.

Claim: S is bounded above.

For: We will show that 2 is an upper bound for S. So, let x ∈ S. Suppose, for a contradiction, that
x � 2. Then x > 2, so x2 > 22 = 4 > 2, so x2 ≮ 2, contradicting the assumption that x ∈ S.

From this we know that S has a least upper bound. Put a = supS: we will show that a2 = 2 as
required.

Claim: a2 ≮ 2.

For: Suppose, for a contradiction, that a2 < 2. Put p = 2 − a2 and q = p
5 . Notice that a ≤ 2,

because 2 is an upper bound for S, and 0 < p ≤ 2 so q < 1

(a + q)2 = a2 + 2aq + q2

< a2 + 2 · 2 · q + 1 · q (since a ≤ 2 and q < 1)

= a2 + 5q
= 2.

So we have (a+ q)2 < 2, so a+ q ∈ S. But a < a+ q, contradicting the fact that a is an upper
bound for S. Thus we cannot have a2 < 2.

Claim: a2 ≯ 2.

For: Suppose, for a contradiction, that a2 > 2. Put r = a2 − 2, and ε = r
2 . Then ε > 0, so since

a = supS there is some s ∈ S with a− ε < s ≤ a. Since s > a− ε we have

s2 > (a− ε)2

= a2 − 2ε + ε2

≥ a2 − 2ε (since ε2 ≥ 0)
= 2,

so s2 > 2, contradicting the assumption that s ∈ S. This shows that we cannot have a2 > 2.

Hence we must have a2 = 2, as required.
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Friday: Sequences

Sequences [5.5, 8.5]

Definition. Let A be a set. A sequence in A is a function s : N → A. We usually write s(n) as sn,
and we write (sn) or s1, s2, s3, . . . for the whole sequence.

Example 18. The sequence (n−1
n ) has sn = n−1

n , so it is the sequence 0, 1
2 , 2

3 , 3
4 . . . .

Definition. Let (sn) be a sequence in R. We say that (sn) is

• increasing if for all n ∈ N, sn ≤ sn+1;

• strictly increasing if for all n ∈ N, sn < sn+1;

• decreasing if for all n ∈ N, sn ≥ sn+1;

• strictly decreasing if for all n ∈ N, sn > sn+1;

• monotonic if it is either increasing or decreasing;

• bounded above if { sn : n ∈ N } is bounded above;

• bounded below if { sn : n ∈ N } is bounded below; and

• bounded if it is both bounded above and below.

Example 19. The sequence (n−1
n ) is strictly increasing (si it is increasing, so it is monotone), and

is bounded above by 1 and below by 0, so it is bounded.

Definition. For a ∈ R we define |a| by

|a| =
{

a if a ≥ 0,
−a otherwise.

Thus we have |a| ≥ 0 for all a ∈ R, with |a| > 0 unless a = 0.

Proposition 20. For any a, x ∈ R, ε ∈ R with ε > 0, we have |a− x| < ε iff a− ε < x < a + ε.

Proof. Exercise.

Definition. Let (sn) be a sequence in R, and let L ∈ R. We say that (sn) converges to L if for
every ε ∈ R with ε > 0 we can find an N ∈ N such that for all n > N , |sn−L| < ε. If (sn) converges
to L, we write sn → L as n →∞, and call L a limit of the sequence (sn).

Example 21. The sequence (n−1
n ) converges to 1.

Example 22. The sequence 1,−1
2 , 1

3 ,−1
4 , 1

5 , . . . converges to 0.

Theorem 23. If the sequence (sn) in R has a limit, then the limit is unique.
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