MATHS 255FS Class Test: Overview of questions. Detach for reference

1. For any integer n, let A(n) be the statement:

If n is even, then n^2 is even and n+1 is odd.

- (a) (3 marks) Write down the negation of A(n).
- (b) (2 marks) Write down the contrapositive of A(n).
- (c) (2 marks) Write down the converse of A(n).
- (d) (3 marks) Determine with reason whether it is true that $\forall n \in \mathbb{N} A(n)$.
- 2. (a) (7 marks) Proof by induction that $4^{3n} 1$ is divisible by 9, for any nonnegative integer n.
 - (b) (3 marks) Use proof by contradiction to show that for any integers a, b if a + b is odd, then a is odd or b is odd.
- **3.** Let $S = \{-7, -6, -2, 0, 1, 4, 5, 7\}$ be a subset of \mathbb{Z} , and let \sim be a relation defined on S by $x \sim y$ if $3 \mid (x + 2y)$.
 - (a) (6 marks) Show that \sim is an equivalence relation.
 - (b) (4 marks) Find all distinct equivalence classes.
- 4. (a) (6 marks) Let the function $f : \mathbb{Z} \to \mathbb{Z}$ be defined by f(x) = 3x + 5. Show that f is one-to-one but not onto.
 - (b) (4 marks) Let g and h be bijective functions from \mathbb{Z} to \mathbb{Z} . Show that $(g \circ h)^{-1} = h^{-1} \circ g^{-1}$.