MATHS 255 FS

Answers for Regular Tutorial 5

1.

*	R_0	R_{120}	R_{240}	V	D'	D''
R_0	R_0	R_{120}	R_{240}	V	D'	D''
R_{120}	R_{120}	R_{240}	R_0	D'	D''	V
R_{240}	R_{240}	R_0	R_{120}	D''	V	D'
V	V	D''	D'	R_0	R_{240}	R_{120}
D'	D'	V	D''	R_{120}	R_0	R_{240}
D''	D''	D'	V	R_{240}	R_{120}	R_0

2. (a) For all $a, b \in \mathbb{R}$

$$(1+a)(1+b) = 1 + a + b + ab = 1 + a * b.$$

If * is not a binary operation on A, then $a * b \notin A$ for some $a, b \in A$, so that a * b = -1, since $a * b \in \mathbb{R}$ and $A = \mathbb{R} \setminus \{-1\}$. Thus (1 + a)(1 + b) = 1 + a * b = 0 and a = -1 or b = -1. Contradiction.

For $a, b, c \in A$, ((1+a)(1+b))(1+c) = 1 + (a*b)*c and (1+a)((1+b)(1+c)) = 1 + a*(b*c). Since ((1+a)(1+b))(1+c) = (1+a)((1+b)(1+c)) in \mathbb{R} , it follows that (a*b)*c = a*(b*c).

(b) 0 is the identity of (A, *), since 0 * a = 0 + a + 0a = a = a * 0 for all $a \in A$. For $a \in A$, if b is its inverse, then $a * b = 0 \iff (1+a)(1+b) = 1 \iff b = \frac{-a}{1+a}$. Note that $b = \frac{-a}{1+a} \neq -1$, since (1+a)(1+b) = 1. Check $a * \frac{-a}{1+a} = \frac{-a}{1+a} * a = 0$, so $\frac{-a}{1+a}$ is the inverse of a.

Thus (A, *) is a group.

- (c) Since $0 \in B$, it follows that $B \neq \emptyset$. For any $a, b \in B$, $a * b = ab + a + b \in \mathbb{Q}$. But $a * b \in A$, so $a * b \neq -1$ and $a * b \in B = \mathbb{Q} \setminus \{-1\}$. If $a \in B$, then its inverse in A is $\frac{-a}{1+a}$, which is an element of $B = A \cap \mathbb{Q}$. Thus $(B, *) \leq (A, *)$.
- 3. Since L ≤ H, it follows that L ≠ Ø.
 For any a, b ∈ L, ab⁻¹ ∈ L, since L ≤ H. Thus L ≤ G by One-step test.
- **4.** Suppose $\phi : \mathbb{R} \simeq \mathbb{Z}$. Then $\phi(0) = 0$ and $\phi(a) = 1$ for some $a \in \mathbb{R}$. If $\phi(\frac{a}{2}) = n \in \mathbb{Z}$, then $1 = \phi(a) = \phi(\frac{a}{2} + \frac{a}{2}) = \phi(\frac{a}{2}) + \phi(\frac{a}{2}) = 2n$ and $n = \frac{1}{2} \in \mathbb{Z}$. A contradiction.