Department of Mathematics

MATHS 255 FS

1. Let $D_3 = \{R_0, R_{120}, R_{240}, V, D', D''\}$ be the set of all symmetries of an equilateral triangle. Complete the following Cayley table.

*	R_0	R_{120}	R_{240}	V	D'	D''
R_0						
R_{120}				D'		
R_{240}				D''		
V					R_{240}	
D'						
D''						

- **2.** Let $A = \mathbb{R} \setminus \{-1\}$ and let * be an operation on A defined by a * b = a + b + ab.
 - (a) Check (1+a)(1+b) = 1 + a * b for all $a, b \in A$. Hence show that * is an associative binary operation on A.
 - (b) Show (A, *) is a group.
 - (c) Let $B = \mathbb{Q} \setminus \{-1\}$. Show that $(B, *) \leq (A, *)$.
- **3.** Let G be a group, H a subgroup of G. If L is a subgroup of H, then show that L is a subgroup of G.
- **4.** Show that $(\mathbb{Z}, +) \not\simeq (\mathbb{R}, +)$.