MATHS 255 FS

1. If f(x) = 0 or g(x) = 0, then f(x)g(x) = 0 and

 $\deg(f(x)g(x)) = -\infty = \deg(f(x)) + \deg(g(x)).$

(Note $-\infty + c = -\infty$ for any integer c or $c = -\infty$.)

Let $f(x) = a_0 + a_1 x + \dots + a_n x^n$ and $g(x) = b_0 + b_1 x + \dots + b_m x^m$ such that $\deg(f(x)) = n \neq -\infty$ and $\deg(g(x)) = m \neq -\infty$, so that $a_n \neq 0$ and $b_m \neq 0$. Then

$$f(x)g(x) = c_0 + c_1x + \dots + c_{n+m}x^{n+m},$$

where $c_{n+m} = a_n b_m$. Since $a_n \neq 0$ and $b_m \neq 0$, it follows that $c_{n+m} \neq 0$, and so deg(f(x)g(x)) = m + n = deg(f(x)) + deg(g(x)).

2. (a) Note the in \mathbb{Z}_7 ,

Thus $3^{-1} = 5$ in \mathbb{Z}_7 , and $f(x) = (3x^2 + 2)(5x^3 + 6x + 3) + (3x + 5)$. So $q(x) = 5x^3 + 6x + 5$, r(x) = 3x + 5.

(b)

$$f(x) = g(x)(5x^3 + 6x + 3) + (3x + 5)$$

$$g(x) = (3x + 5)(x + 3) + 1$$

$$x + 3 = (x + 3)1 + 0.$$

Thus 1 is a greatest common divisor of f(x) and g(x). Moreover,

$$(3x+5) = f(x) - g(x)(5x^3 + 6x + 3)$$

$$1 = g(x) - (3x+5)(x+3)$$

$$= g(x) - [f(x) - g(x)(5x^3 + 6x + 3)](x+3)$$

$$= f(x)(-x-3) + g(x)(1 + (5x^3 + 6x + 3)(x+3))$$

$$= f(x)(6x+4) + g(x)(5x^4 + x^3 + 6x^2 + 3).$$

Thus u(x) = (6x + 4) and $v(x) = 5x^4 + x^3 + 6x^2 + 3$.

3. Since y * x = y = y * e, it follows by Cancellation Theorem that x = e. Thus y * x = y * e = y for all $y \in G$.