DEPARTMENT OF MATHEMATICS Collaborative Tutorial 3

MATHS 255 FS

1. Use the Euclidean algorithm to find the greatest common divisor of 462 and 54, and find integers x and y such that

gcd(462, 54) = 462x + 56y.

- **2.** Let $a, b \in \mathbb{N}$ and suppose $a = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ and $b = p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}$, where p_1, \dots, p_t are distinct primes and α_i, β_i are nonnegative integers.
 - (a) Show that $a \mid b$ if and only if $\alpha_i \leq \beta_i$ for all i.
 - (b) Let $m_1 = \min\{\alpha_i, \beta_i\}$ and $M_i = \max\{\alpha_i, \beta_i\}$. Show that

 $gcd(a,b) = p_1^{m_1} p_2^{m_2} \dots p_t^{m_t} \qquad lcm(a,b) = p_1^{M_1} p_2^{M_2} \dots p_t^{M_t}.$

Check gcd(a, b)lcm(a, b) = ab.