- 1. Indicate whether each of the following relations on the given set is reflexive, symmetric, antisymmetric, or transitive. Explain your answers.
 - (a) $A = \mathcal{P}(\{1, 2, \dots, 10\})$ and let the relation \sim on A be defined as follows: for all $X, Y \in A$, $X \sim Y$ iff for all $x \in X$, there exists $y \in Y$ such that x|y.
 - (b) $B = \{x \in \mathbb{Z} : x \ge 0\}$ and $x \rho y$ iff x + y = 0.
- **2.** Let *S* be the set $\{a, b, c, d, e, f\}$.
 - (a) Let ρ be the relation

 $\rho = \{(a, a), (b, b), (c, c), (d, d), (e, e), (f, f), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b), (d, e), (e, d)\}$

Verify that ρ is an equivalence relation. Find all equivalence classes and check the collection of distinct classes is a partition of S.

- (b) Let $S_1 = \{a\}$, $S_2 = \{b, d, f\}$ and $S_3 = \{c, e\}$. Verify that $\{S_1, S_2, S_3\}$ is a partition of S. Define an equivalence relation ρ such that each S_i is an ρ -equivalence class.
- **3.** Let $A = \mathbb{Z}$ and \sim be a relation on A such that $x \sim y$ iff x + 3y is even.
 - (a) Show \sim is an equivalence relation.
 - (b) Show that [0], [1] are all distinct equivalence classes.