MATHS 255

1. (a) (6 marks)

*	a	b	c	d
a	С	d	a	b
b	d	c	b	a
c	a	b	c	d
d	b	a	d	c

(b) (4 marks) $e_G = c, b^{-1} = b$ and $d^{-1} = d$ in G.

2. (8 marks) Since det $I_2 = 1$, it follows that $I_2 \in H$ and $H \neq \emptyset$. For $A, B \in H$, det(A) = det(B) = 1 and so

$$\det(AB^{-1}) = \det(A)\det(B^{-1}) = \det(A)\det(B)^{-1} = 1.$$

Thus $AB^{-1} \in H$ and $H \leq \operatorname{GL}_2(\mathbb{R})$ by One-step subgroup test.

3. (a) (**4 marks**)

$+_{4}$	0		2	3
0	0	1	2	3
1	1	$\frac{2}{3}$	$\overline{3}$	0
$\frac{1}{2}$	2	3	0	1
3	3	0	1	2

(b) (6 marks) Construct a Cayley table of G is given as follows:

	1	i	-1	-i
1	1	i	-1	-i
i	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	-1

Define $\psi(0) = 1, \psi(1) = i, \psi(2) = -1, \psi(3) = -i$. Then ψ is a bijection from \mathbb{Z}_4 onto G, and moreover, ψ sends the Cayley table of \mathbb{Z}_4 to the Cayley table of G, so $\psi(x + 4y) = \psi(x)\psi(y)$ and ψ is an isomorphism.

4. (a) (4 marks) Since $\alpha^{-1} = \alpha$ and $e^{-1} = e$ in S_3 , it follows by the following Cayley table of K that $ab^{-1} \in K$ for any $a, b \in K$.

•	e	α
e	e	α
α	α	e

Thus $K \leq S_3$.

(b) (8 marks) $eK = K = \alpha K$, $\varphi K = \{\varphi, \beta\} = \beta K$, $\psi K = \{\psi, \gamma\} = \gamma K$.