Solutions to Assignment 8

1. (5 marks) For $n \in \mathbb{N}$, $6|9(n+12)(11n+25) \iff 9(n+12)(11n+25) \equiv 0 \pmod{6}$. Now

$$9(n+12)(11n+25) \equiv 3n(5n+1) \equiv -3n(n-1) \pmod{6}.$$

If n is even, then 6|3n. If n is odd, then 6|3(n-1). So in any case 6|-3n(n-1) and hence 6|9(n+12)(11n+25).

2. (a) (5 marks) If
$$f(x) = 0$$
 or $g(x) = 0$, then $f(x)g(x) = 0$ and

$$\deg(f(x)g(x)) = -\infty = \deg(f(x)) + \deg(g(x)).$$

(Note $-\infty + c = -\infty$ for any integer c or $c = -\infty$.)

Let $f(x) = a_0 + a_1 x + \dots + a_n x^n$ and $g(x) = b_0 + b_1 x + \dots + b_m x^m$ such that $\deg(f(x)) = n \neq -\infty$ and $\deg(g(x)) = m \neq -\infty$, so that $a_n \neq 0$ and $b_m \neq 0$. Then

 $f(x)g(x) = c_0 + c_1x + \dots + c_{n+m}x^{n+m},$

where $c_{n+m} = a_n b_m$. Since $a_n \neq 0$ and $b_m \neq 0$, it follows that $c_{n+m} \neq 0$, and so $\deg(f(x)g(x)) = m + n = \deg(f(x)) + \deg(g(x))$.

(b) (5 marks) Since a(x) | b(x) and b(x) | a(x), it follows that a(x) = 0 \iff b(x) = 0.
If a(x) = 0 = b(x), then a(x) = cb(x) for some non-zero c ∈ ℝ.
Suppose a(x) ≠ 0, so that b(x) ≠ 0. Since b(x) | a(x), it follows that b(x)u(x) = a(x) for some 0 ≠ u(x) ∈ ℝ[x], so that by (a) above,

$$\deg(b(x)) + \deg(u(x)) = \deg(a(x))$$

and in particular, $\deg(b(x)) \leq \deg(a(x))$. Similarly, since $a(x) \mid b(x)$, it follows that $\deg(a(x)) \leq \deg(b(x))$, and hence $\deg(a(x)) = \deg(b(x))$. In particular, $\deg(u(x)) = 0$ and u(x) = c is a non-zero number.

(c) (5 marks) Let n = 4, and $c(x) = \overline{2}x + \overline{1} = d(x) \in \mathbb{Z}_4[x]$. Then

$$c(x)d(x) = (\bar{2}x + \bar{1})^2 = \bar{4}x^2 + \bar{4}x + \bar{1} = \bar{1}$$

and so $\deg(c(x)d(x)) = 0 \neq 2 = \deg(c(x)) + \deg(d(x)).$

3. (a) (6 marks) Using long division in $\mathbb{Z}_5[x]$ we have

$$x^{4} + 2x^{3} + 4x^{2} + 2x + 3 = (4x^{3} + 2x^{2} + 4x + 2)(4x + 1) + (x^{2} + 1),$$

so that q(x) = 4x + 1 and $r(x) = x^2 + 1$.

(b) (6 marks) Use Euclidean Algorithm:

f(x)	u(x)	v(x)	
$x^4 + 2x^3 + 4x^2 + 2x + 3$	1	0	r_1
$4x^3 + 2x^2 + 4x + 2$	0	1	r_2
$x^2 + 1$	1	-(4x+1)	$r_3 = r_1 - (4x + 1)r_2$
0	*	*	$r_4 = r_2 - (4x + 2)r_3$

It follows that $x^2 + 1$ is a gcd(f(x), g(x)) and

$$x^{2} + 1 = (x^{4} + 2x^{3} + 4x^{2} + 2x + 3) + (4x^{3} + 2x^{2} + 4x + 2)(-4x - 1)$$

so that u(x) = 1 and v(x) = -4x - 1 = x + 4.

4. (8 marks) Let $A = \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} y & y \\ 0 & 0 \end{pmatrix}$ be elements of K. Then $AB = \begin{pmatrix} xy & xy \\ 0 & 0 \end{pmatrix}$ and since $x \neq 0$ and $y \neq 0$ we have $xy \neq 0$, thus $AB \in K$.

Hence, K is closed under matrix multiplication.

Associativity is satisfied for multiplication of all matrices, not only for the ones in K.

The identity element (which element E in K satisfies EX = XE = X for all $\in K$?) is $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ and it is a member of K.

The inverse of $A = \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$ in K is $\begin{pmatrix} 1/x & 1/x \\ 0 & 0 \end{pmatrix}$ (note that $x \neq 0$, so 1/x makes sense). Thus K is a group.