1. (5 marks) For $n \in \mathbb{N}$, $6|9(n+12)(11n+25) \iff 9(n+12)(11n+25) \equiv 0 \pmod{6}$. Now

$$
9(n+12)(11n+25) \equiv 3n(5n+1)
$$

$$
\equiv -3n(n-1) \pmod{6}.
$$

If n is even, then 6|3n. If n is odd, then 6|3(n − 1). So in any case 6| − 3n(n − 1) and hence $6|9(n+12)(11n+25).$

2. (a) (5 marks) If
$$
f(x) = 0
$$
 or $g(x) = 0$, then $f(x)g(x) = 0$ and

$$
\deg(f(x)g(x)) = -\infty = \deg(f(x)) + \deg(g(x)).
$$

(Note $-\infty + c = -\infty$ for any integer c or $c = -\infty$.)

Let $f(x) = a_0 + a_1x + \cdots + a_nx^n$ and $g(x) = b_0 + b_1x + \cdots + b_mx^m$ such that $\deg(f(x)) = n \neq -\infty$ and deg($g(x)$) = $m \neq -\infty$, so that $a_n \neq 0$ and $b_m \neq 0$. Then

 $f(x)g(x) = c_0 + c_1x + \cdots + c_{n+m}x^{n+m}$

where $c_{n+m} = a_n b_m$. Since $a_n \neq 0$ and $b_m \neq 0$, it follows that $c_{n+m} \neq 0$, and so deg $(f(x)g(x)) = m + n = \deg(f(x)) + \deg(g(x))$.

(b) (5 marks) Since $a(x) | b(x)$ and $b(x) | a(x)$, it follows that $a(x) = 0 \iff b(x) = 0$. If $a(x) = 0 = b(x)$, then $a(x) = cb(x)$ for some non-zero $c \in \mathbb{R}$. Suppose $a(x) \neq 0$, so that $b(x) \neq 0$. Since $b(x) | a(x)$, it follows that $b(x)u(x) = a(x)$ for some $0 \neq u(x) \in \mathbb{R}[x]$, so that by (a) above,

$$
\deg(b(x)) + \deg(u(x)) = \deg(a(x))
$$

and in particular, $deg(b(x)) \leq deg(a(x))$. Similarly, since $a(x) \mid b(x)$, it follows that $deg(a(x)) \leq$
 $deg(b(x))$ and hones $deg(a(x)) = deg(b(x))$. In particular, $deg(u(x)) = 0$ and $u(x) = c$ is a $\log(\frac{m}{\epsilon})$, and hence $\log(\frac{m}{\epsilon})$. $\log(\frac{m}{\epsilon})$. In particular, $\log(\frac{m}{\epsilon})$ = 0 and $\log(\frac{m}{\epsilon})$

non-zero number. (c) (5 marks) Let $n = 4$, and $c(x) = \bar{2}x + \bar{1} = d(x) \in \mathbb{Z}_4[x]$. Then

$$
c(x)d(x) = (\bar{2}x + \bar{1})^2 = \bar{4}x^2 + \bar{4}x + \bar{1} = \bar{1}
$$

and so $deg(c(x)d(x)) = 0 \neq 2 = deg(c(x)) + deg(d(x)).$

3. (a) (**6 marks**) Using long division in $\mathbb{Z}_5[x]$ we have

$$
x^{4} + 2x^{3} + 4x^{2} + 2x + 3 = (4x^{3} + 2x^{2} + 4x + 2)(4x + 1) + (x^{2} + 1),
$$

so that $q(x) = 4x + 1$ and $r(x) = x^2 + 1$.

(b) (⁶ marks) Use Euclidean Algorithm:

It follows that $x^2 + 1$ is a gcd($f(x)$, $q(x)$) and

$$
x^{2} + 1 = (x^{4} + 2x^{3} + 4x^{2} + 2x + 3) + (4x^{3} + 2x^{2} + 4x + 2)(-4x - 1),
$$

so that $u(x) = 1$ and $v(x) = -4x - 1 = x + 4$.

4. (8 marks) Let $A = \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$ 0 0 0 0 and $B = \left(\begin{array}{cc} y & y \\ 0 & 0 \end{array}\right)$

Then $AB = \begin{pmatrix} xy & xy \\ 0 & 0 \end{pmatrix}$ and since $x \neq 0$ and $y \neq 0$ we have $xy \neq 0$, thus $AB \in K$.

Hence, K is closed under matrix multiplication. Hence, K is closed under matrix multiplication.

Associativity is satisfied for multiplication of all matrices, not only for the ones in K .

The identity element (which element E in K satisfies $EX = XE = X$ for all $\in K$?) is $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ 0 0

 $\frac{1}{2}$ The inverse of $A = \begin{pmatrix} x & x \\ 0 & 0 \end{pmatrix}$ 0 0) in K is $\begin{pmatrix} 1/x & 1/x \\ 0 & 0 \end{pmatrix}$ \setminus (note that $x \neq 0$, so $1/x$ makes sense). Thus K is a group.