- Due: 24 September 2003
- 1. (a) (5 marks) $a \mid b \iff aq = b$ for some $q \in \mathbb{N}$. Let $q = p_1^{d_1} p_2^{d_2} \cdots p_\ell^{d_\ell}$ for some $d_i \geq 0$. Then $aq = b \iff p_1^{e_1 + d_1} p_2^{e_2 + d_2} \cdots p_\ell^{e_\ell + d_\ell} = p_1^{f_1} p_2^{f_2} \cdots p_\ell^{f_\ell} \iff e_i + d_i = f_i$ for all $i \iff e_i \leq f_i$ for all i.
 - (b) (5 marks) Let $d = p_1^{m_1} p_2^{m_2} \cdots p_\ell^{m_\ell}$. Then by (a) above, d|a and d|b, so that d is a common divisor of a and b. Suppose $x = p_1^{u_1} p_2^{u_2} \cdots p_\ell^{u_\ell}$ is a common divisor of a and b, where $u_i \geq 0$. Then x|a and x|b, so that by (a) above, $u_i \leq e_i$ and $u_i \leq f_i$. It follows that $u_i \leq \min\{e_i, f_i\} = m_i$ for all i, which is equivalent to x|d. So $d = \gcd(a, b)$.
 - (c) (5 marks) Similarly, let $m=p_1^{g_1}p_2^{g_2}\cdots p_\ell^{g_\ell}$. Then by (a) above, a|m and b|m, so that m is a common multiple of a and b. Suppose $y=p_1^{v_1}p_2^{v_2}\cdots p_\ell^{v_\ell}$ is a common multiple of a and b, where $v_i\geq 0$. Then a|y and y|m, so that by (a) above, $e_i\leq v_i$ and $f_i\leq v_i$. It follows that $\max\{e_i,f_i\}=g_i\leq v_i$ for all i, which is equivalent to m|y. So $m=\mathrm{lcm}(a,b)$. Finally, since $\max\{e_i,f_i\}+\min\{e_i,f_i\}=e_i+f_i$, it follows that $ab=md=p_1^{g_1}p_2^{g_2}\cdots p_\ell^{g_\ell}\cdot p_1^{m_1}p_2^{m_2}\cdots p_\ell^{m_\ell}$
- 2. (a) (5 marks) We first use Euclidean Algorithm to find gcd(2598,604):

d	x	y	
2598	1	0	r_1
604	0	1	r_2
182	1	-4	$r_3 = r_1 - 4r_2$
58	-3	13	$r_4 = r_2 - 3r_3$
8	10	-43	$r_5 = r_3 - 3r_4$
2	-73	314	$r_6 = r_4 - 7r_4$
0	302	-1299	$r_7 = r_5 - 4r_6$

From this we see that gcd(2598,604) = 2, and that $2 = 2598 \cdot (-73) + 604 \cdot 314$.

- (i) Since $2 = 2598 \cdot (-73) + 604 \cdot 314$, it follows that $14 = 2598 \cdot (-511) + 604 \cdot 2198$, so that (-511, 2198) is a solution and the general solution of the equation 2598x + 604y = 14 is $x = -511 \frac{604}{2}t = 511 302t$, $y = 2198 + \frac{2598}{2}t = 2198 + 1299t$ for $t \in \mathbb{Z}$.
- (ii) (5 marks) From the working above we know that $\gcd(2598,604) = 2$, and that $2 = 2598 \cdot (-73) + 604 \cdot 314$, and $12 = 2 \cdot 6$, so $12 = 2598 \cdot (-438) + 604 \cdot 1884$. Thus the general solution of the equation 2598x + 604y = 12 is $x = -438 \frac{604}{2}t = -438 302t$, $y = 1884 + \frac{2598}{2}t = 1884 + 1299t$ for $t \in \mathbb{Z}$.
- (b) (5 marks) From the result of part (a) we know that the general solution is $x = -438 \frac{604}{2}t = -438 302t$, $y = 1884 + \frac{2598}{2}t = 1884 + 1299t$ for $t \in \mathbb{Z}$. Now $10 \le x \le 200 \iff 10 \le -438 302t \le 200 \iff 448 \le -302t \le 638$, so t = -2. Thus the solution is (x, y) = (166, -714).

3. (a) (5 marks)
$$3x^2 - x - 4 \equiv 0 \pmod{5} \iff \bar{3}\bar{x}^2 - \bar{x} + \bar{1} = \bar{0} \text{ in } \mathbb{Z}_5.$$
 Now

$$\bar{x} = \bar{0} \implies \bar{3}\bar{x}^2 - \bar{x} + \bar{1} = \bar{1}$$

$$\bar{x} = \bar{1} \implies \bar{3}\bar{x}^2 - \bar{x} + \bar{1} = \bar{3}$$

$$\bar{x} = \bar{2} \implies \bar{3}\bar{x}^2 - \bar{x} + \bar{1} = \bar{1}$$

$$\bar{x} = \bar{3} \implies \bar{3}\bar{x}^2 - \bar{x} + \bar{1} = \bar{0}$$

$$\bar{x} = \bar{4} \implies \bar{3}\bar{x}^2 - \bar{x} + \bar{1} = \bar{0}.$$

Thus $\bar{x} = \bar{3}$ and $\bar{4}$ are the solutions in \mathbb{Z}_5 , and so $x \in \bar{3} \cup \bar{4}$ are solutions, that is, $x \in \{5k+3, 5k+4 : k \in \mathbb{Z}\}$.

- (b) (2 marks) $35x \equiv 14 \pmod{42} \iff 35x + 42y = 14 \text{ for some } y \in \mathbb{Z} \iff 5x + 6y = 2 \text{ for some } y \in \mathbb{Z} \iff 5x \equiv 2 \pmod{6}. \iff \bar{5} \cdot_{6} \bar{x} = \bar{2} \text{ in } \mathbb{Z}_{6}.$
 - (3 marks) Now

Thus $5x \equiv 2 \pmod{6} \iff \bar{x} = \bar{4} \iff x \in \bar{4}$, that is, $x \in \{6k + 4 : k \in \mathbb{Z}\}$.