- Determine whether or not the following subsets of the poset (**R**, ≤) are order isomorphic.
 ["Determine" means prove your answer]
 - (a). **R**, \mathbf{R}^+ (i.e. the positive real numbers).
 - (b) \mathbf{R} , (0,1) (i.e the open interval).

(c)
$$S = \left\{ \frac{1}{n} : n \in \mathbb{Z} \setminus \{0\} \right\}, T = \mathbb{Z} \setminus \{0\}.$$

Soln:

- (a) Yes, let $f(x) = e^x$. Then $f : \mathbf{R} \to \mathbf{R}^+$ is a strictly order-preserving bijection.
- (b) Yes, let $f(x) = \frac{\tan^{-1} x}{\pi/2}$ for example. Then $f : \mathbf{R} \to (0,1)$ is a strictly order-preserving bijection.
- (c) No. We can prove this by finding some poset property that *S* has but not *T*. For example, *S* has a smallest element (= -1) but *T* has no smallest element.
- 2. Let $S = \mathbf{Q} \setminus \{1\}$.
 - (a) Show that * defined as follows is a binary operation on *S*: a * b = a + b ab. [You must show that if $a, b \in S$ then $a * b \in S$.]
- Soln: The sum and product of rational numbers is rational, so we only need to show that if $a \neq 1$ and $b \neq 1$ then $a^*b \neq 1$. So suppose $a^*b = 1$. a+b-ab=1 implies a(1-b)=1-b, hence (a-1)(1-b)=0, so a=1 or b=1.

(b) Show that * is commutative and associative.

Soln: $a^*b = a+b-ab = b+a-ba = b^*a$. Hence, * is commutative.

$$a^{*}(b^{*}c) = a + (b^{*}c) - a(b^{*}c) = a + (b + c - bc) - a(b + c - bc) = a + b + c - ab - bc - ac + abc.$$

$$(a*b)*c = a*b+c-(a*b)c = a+b-ab+c-(a+b-ab)c = a+b+c-ab-ac-bc+abc = a*(b*c).$$

(c) Find an identity element e under the operation *.

Soln: An identity element *e* would have to satisfy at least the condition that $e^*e = e$. In other words e = e + e - ee. This implies e = ee so that e = 0 or 1. So if an identity element exists, it must be 0. Now $a^*0 = a + 0 - a0 = a$, so sure enough, e = 0 is an identity element.

- (d) Prove that your answer to (c) is unique (i.e. that if e, f are both identity elements under the operation *, then e = f.
- Soln: $e = e^{f} = f$. (The first equation follows since *f* is an identity, and the second follows because *e* is an identity.)
 - (e) Show that every element of *S* has an "inverse", i.e. $\forall x \in S \ \exists y \in S, x * y = e$ (where *e* is the unique identity element from (c) and (d) above).
- Soln: $x^*y = e$ implies x+y-xy = 0 hence x(y-1)=y and x=y/(y-1). Since $y \in S$, we have $y \neq 1$, so that y/(y-1) is a defined rational number. Moreover, $y/(y-1) \neq 1$ since it is impossible that y = y-1. Since $y^*(y/(y-1)) = 0 = e$, we see that any element y has an inverse under *.
- 3. Prove that the product of any four consecutive positive integers is divisible by 12.
- Soln: Any four consecutive integers contain at least one which is divisible by 3 and exactly two which are divisible by 2. Hence their product is divisible by both 3 and 4, so that the product must be divisible by 12 (since gcd(3,4) = 1). Alternatively, this can be proved by induction: For n > 0 let P(n) be the statement: n(n+1)(n+2)(n+3) is divisible by 4. P(I) is true because 1*2*3*4 = 24 = 12*2. If k > 1 and P(k) is true, then k(k+1)(k+2)(k+3) = 12m for some integer m. One then uses this to show that (k+1)(k+2)(k+3)(k+4) is divisible by 12. Etc. It is kind of messy and not the best way.
- 4. Use the Euclidean algorithm to find d = gcd(m,n) and to find integers u,v such that d = mu + nv, and use prime factorization to find lcm(m,n) if m = 4635 and n = 17061.

50111.		
4635	1	0
17061	0	1
3156	-3	1
1479	4	-1
198	-11	3
93	81	-22
12	-173	47
9	1292	-351
3	-1465	398
0 Last non-zero remainder is 3.		
TT 1/46	25 150(1)	

Soln.

Hence gcd(4635, 17061) = 3 and 3 = 4635*(-1465) + 17061*(398).

 $4635 = 3^2 * 5 * 103$, and $17061 = 3 * 11^2 * 47$. Hence, $lcm(4635,17061) = 3^2 * 5 * 11^2 * 47 * 103$.