1. [8 marks] From the results in class (or by experimentation or some other method), we claim that $\sum_{i=1}^{n} 3(4i^2 + 2i - 1) = n(4n + 1)(n + 2) = 4n^3 + 9n^2 + 2n.$

Proof: We proceed to prove the sum by induction.

Base case: When n = 1, $3(4n^2 + 2n - 1) = 15 = n(4n + 1)(n + 2)$ as required.

Inductive step: Suppose $\sum_{i=1}^{\kappa} 3(4i^2 + 2i - 1) = k(4k + 1)(k + 2)$. Then

$$\sum_{i=1}^{k+1} 3(4i^2 + 2i - 1) = \sum_{i=1}^k 3(4i^2 + 2i - 1) + 3(4(k+1)^2 + 2(k+1) - 1)$$

= $4k^3 + 9k^2 + 2k + 12(k^2 + 2k + 1) + 6k + 6 - 3$
= $4k^3 + 21k^2 + 32k + 15$
= $(k+1)(4k^2 + 17k + 15)$
= $(k+1)(4k+5)(k+3)$
= $(k+1)(4(k+1) + 1)((k+1) + 2)$, as required.

So, by mathematical induction, $\sum_{i=1}^{n} 3(4i^2 + 2i - 1) = n(4n + 1)(n + 2).$

2. [7 marks]

Proof: We proceed to prove that the inequality holds when $n \ge 3$. Let |A| = n. We note that $|\mathcal{P}(A \times A)| = 2^{n^2}$, while $|\mathcal{P}(A) \times \mathcal{P}(A)| = 2^{2n}$. Base case: When n = 3 we have $2^9 \ge 2^6$ as required. The base case cannot be n = 2 since $2^4 \ge 2^4$.

Base case: When n = 3, we have $2^9 \ge 2^6$, as required. The base case cannot be n = 2, since $2^4 \ge 2^4$. Inductive step: Suppose $2^{k^2} \ge 2^{2k}$, for some $k \ge 3$. Then $k^2 > 2k$. Now

$$2(k+1) = 2k+2 < 2k+k < k^2+k < k^2+2k+1 = (k+1)^2$$

So, by mathematical induction, $|\mathcal{P}(A \times A)| > |\mathcal{P}(A) \times \mathcal{P}(A)|$ when $|A| \ge 3$.

3. [7 marks]

Proof:

Base case: When n = 1, we have $7^{n+2} - 3^n = 343 - 3 = 340 = 4 \times 85$, so $4 | (7^{n+2} - 3^n)$.

Inductive step: Assume $7^{k+2} - 3^k = 4m$, for some integer m. Then

$$7^{k+3} - 3^{k+1} = 7 \times 7^{k+2} - 3 \times 3^k$$

= $4 \times 7^{k+2} + 3(7^{k+2} - 3^k)$
= $4 \times 7^{k+2} + 3(4m)$
= $4(7^{k+2} + 3m),$

so it has 4 as a divisor.

So, by mathematical induction, $7^{n+2} - 3^n$ has 4 has a divisor, for any natural number n.

4. [10 marks]

Proof:

Base case: Consider the 4×4 chessboards shown. Together, they give a path of knight moves from the top-left square to any other square. Since paths are obviously reversible, these give a path of knight moves from any square to any other.

Inductive Step: Suppose that there is a path of knight moves from any square to any square on an $n\times n$ chessboard.

Suppose A and B are two squares of an $(n + 1) \times (n + 1)$ chessboard. We note that the A lies in an $n \times n$ chessboard with the square C = (2, 2). Similarly B lies in an $n \times n$ chessboard with the square C, although not necessarily the same $n \times n$ chessboard.

So there is a path of knight moves from A to C, and a path of knight moves from B to C, by the inductive hypothesis. Combining these paths gives a path from A to B, as required.

So, by mathematical induction, there is a path of knight moves from any square to any square on any $n \times n$ chessboard with $n \neq 4$.

- **5.** [8 marks]
 - (a) \triangleleft is reflexive, since for any $x \in \mathbb{R}$, we have |x x| = 0 < 1. So $x \triangleleft x$.
 - (b) \triangleleft is symmetric. Suppose $x, y \in \mathbb{R}$ and |x y| < 1. Then y x = -(x y), and so |y x| = |x y| < 1. So $x \triangleleft y \implies y \triangleleft x$.
 - (c) \triangleleft is not antisymmetric, since $0.1 \triangleleft 0$ and $0 \triangleleft 0.1$, but $0 \neq 0.1$.
 - (d) \triangleleft is not transitive, since $0 \triangleleft 0.9$ and $0.9 \triangleleft 1.8$, but $0 \not \triangleleft 1.8$.

TOTAL MARKS: 40