1. [8 marks]

<u>Existence</u>: Suppose $x \in \mathbb{R}$. Then since $f(x)g_k(x) = k$, and $f(x) \neq 0$, we have $g_k(x) = \frac{k}{f(x)}$. This construction of $g_k(x)$ can be applied at any $x \in \mathbb{R}$, since $f(x) \neq 0$.

<u>Uniqueness</u>: Suppose there are two functions g(x) and h(x) for which f(x)g(x) = f(x)h(x) = k, for every x. Then clearly, for any x, we have $g(x) = \frac{k}{f(x)} = h(x)$, so g(x) = h(x) for every x, and so the functions are equal. Hence, $g_k(x)$ us unique.

2. [4 marks]

When $f(\alpha) = 0$, there are two cases to consider.

If k = 0, then at $x = \alpha$, we have $f(\alpha)g_0(\alpha) = 0$, so $0g_0(\alpha) = 0$; any value of $g_0(\alpha)$ will work, and $g_0(x)$ is not unique.

For $k \neq 0$, at $x = \alpha$ we have $f(\alpha)g_k(\alpha) = k$, so $0g_k(\alpha) = k \neq 0$. No value for $g_k(\alpha)$ can, when multiplied by 0, give $k \neq 0$. So the function $g_k(x)$ does not exist.

3. [13 marks]

(a) Direct Proof: Let $h(x) = f(x) \cdot g(x)$. Now we consider h(-x).

$$h(-x) = f(-x) \cdot g(-x)$$

= $f(x) \cdot g(x)$ by the even-ness of $f(x)$ and $g(x)$
= $h(x)$

so h(x) is an even function.

The converse is not true. For example, f(x) = g(x) = x is not an even function, but $h(x) = f(x)g(x) = x^2$ is an even function.

(b) Direct Proof: Let h(x) = f(x) + g(x). Now consider h(-x).

$$h(-x) = f(-x) + g(-x)$$

= $-f(x) + -g(x)$ by the oddness of $f(x)$ and $g(x)$
= $-(f(x) + g(x))$
= $-h(x)$

so h(x) is an odd function.

The converse is not true. For example, if f(x) = 2x - 1 and g(x) = 3x + 1, then h(x) = f(x) + g(x) = x is odd, but neither of f(x) and g(x) is odd.

- (c) Direct Proof: If f(x) is even and odd, then f(-x) = f(x) = -f(x). So, for any $x \in \mathbb{R}$, we have f(-x) = -f(x). This means that f(-x) = 0, for any x. So f(x) = 0 is the unique function which is both even and odd.
- **4.** [10 marks]
 - (a) (i) TRUE
 - (ii) FALSE
 - (iii) FALSE
 - (iv) TRUE
 - (v) FALSE
 - (vi) TRUE
 - (vii) TRUE
 - (viii) TRUE
 - (b) There are different possible answers, perhaps the most compact being:

$$B = \{C \subseteq A : |C| = 2\}$$

5. [6 marks]

<u>Commutative</u>: need to show $A \oplus B = B \oplus A$.

If $x \in A \oplus B$, then either $x \in A$ and $x \notin B$, or $x \notin A$ and $x \in B$. In either case, $x \in B \oplus A$. So $A \oplus B \subseteq B \oplus A$. The converse is exactly the same, so $A \oplus B = B \oplus A$.

<u>Associative</u>: need to show that $(A \oplus B) \oplus C = A \oplus (B \oplus C)$.

Suppose $x \in (A \oplus B) \oplus C$.

Then either (a) $x \in A \oplus B$ and $x \notin C$, or (b) $x \in C$ and $x \notin A \oplus B$.

In case (a), either $x \in A$ or $x \in B$, but not both. If $x \in A$, then $x \notin B$. Since $x \notin B$ and $x \notin C$, we have $x \notin B \oplus C$, so $x \in A \oplus (B \oplus C)$. Otherwise $x \in B$, and we have $x \notin A$ and $x \in B \oplus C$, so $x \in A \oplus (B \oplus C)$.

In case (b), either $x \in A$ and $x \in B$, or $x \notin A$ and $x \notin B$. If it is the first of these, then $x \notin B \oplus C$, and so $x \in A \oplus (B \oplus C)$. In the second case, $x \in B \oplus C$ and so $x \in A \oplus (B \oplus C)$ also.

In any case, $x \in A \oplus (B \oplus C)$, so $(A \oplus B) \oplus C \subseteq A \oplus (B \oplus C)$.

By symmetry, the proof of $A \oplus (B \oplus C) \subseteq (A \oplus B) \oplus C$ is the same (we can make use of commutativity), so they are equal, as required.

[A 'proof' showing these sets as Venn diagrams is not sufficient.]

TOTAL MARKS: 40