- 1. (5 marks) Suppose D_5 has a subgroup of order 5. Then by Lagrange's theorem, 5 divides $|D_4| = 8$, which is impossible.
- **2.** (a) (3 marks) Suppose ab = 0 and $a \neq 0$. Then there is an element $c \in F$ such that $ca = 1_F$. Thus $b = 1_F b = (ca)b = c(ab) = c0_F = 0_F$.
 - (b) (3 marks) Note $-a = (-1_F)a$, since $a + (-a) = 0_F = 0_F a = (1_F + (-1_F))a = a + (-1_F)a$. Thus $-ab = ((-1_F)a)b = (-1_F)(ab) = -(ab)$, and $(-a)(-b) = ((-1_F)a)((-1_F)b) = -(-1_F)ab = ab$.
 - (c) $(3 \text{ marks}) a/b+c/d = ab^{-1}+cd^{-1} = ab^{-1}dd^{-1}+cd^{-1}bb^{-1} = (ad+cb)b^{-1}d^{-1} = (ad+cb)(bd)^{-1} = (ad+cb)/bd.$
 - (d) (2 marks) $(a/b)(c/d) = ab^{-1}cd^{-1} = acb^{-1}d^{-1} = ac(bd)^{-1} = ac/bd$.
 - (e) (2 marks) $(a/b)/(c/d) = ab^{-1}(cd^{-1})^{-1} = ab^{-1}c^{-1}d = ad(bc)^{-1} = ad/bc.$
- **3.** (a) (i) (3 marks) Suppose a < b. Then $b a \in P$ and $-c = 0 c \in P$, so that $-cb + ca = (-c)(b-a) \in P$ and cb < ca.
 - (ii) (3 marks) Since -1 < 0, it follows by (i) above that if a < b, then $(-1)b < (-1)a \iff -b < -a$. Thus if a < 0, then -a = (-1)a > 0, as -1 < 0.
 - (iii) (4 marks) Suppose ab > 0. If a > 0 and b < 0, then by (i), $ab < 0 \cdot b = 0$. If a > 0 and b > 0, then ab > 0. If a < 0 and b > 0, then by (i), $ab < 0 \cdot a = 0$. If a < 0 and b < 0, then by (i), $ab > 0 \cdot b = 0$.
 - (b) (4 marks) Suppose \mathbb{C} is ordered. Then there is a subset P such that $1 \in P$. But $x^2 \in P$ for any $x \in \mathbb{C}$ with $x \neq 0$, so $-1 = i^2 \in P$ and $0 = 1 + (-1) \in P$, which is impossible.
- **4.** (8 marks) Let U_S be the set of all upper bounds of S. Then $T \subseteq U_S$ and in particular, S is bounded above. Thus lub S exists, and is the least element of U_S . Since $T \subseteq U_S$, lub $S \leq y$ for each $y \in T$.

Let L_T be the set of lower bounds of T. As shown above, lub $S \in L_T$ and in particular, T is bounded below. Thus glb T exists, and is the greatest element of L_T . Since lub $S \in L_T$, lub $S \leq$ glb T.