	DEFINITION OF MINIMUME	
Maths 255 SC	Assignment 9	Due: 7 October 2003

NB: Please deposit your solutions in the appropriate box by 4 p.m. on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a mathematics department cover sheet: these are available from outside the Resource Centre.

PLEASE SHOW ALL WORKING.

- **1.** (10 marks) Given that * is a group operation on the set $G = \{a, b, c, d\}$.
 - (a) (6 marks) Complete the following Cayley table:

- (b) (4 marks) Find the identity e_G of G, and find the inverses b^{-1} and d^{-1} in G.
- **2.** (8 marks) Let $GL_2(\mathbb{R})$ be the set of all invertible 2×2 matrices over \mathbb{R} . As shown in the class $GL_2(\mathbb{R})$ is a group under matrix multiplication. Let H be a subset of $GL_2(\mathbb{R})$ such that

$$H = \{A \in \operatorname{GL}_2(\mathbb{R}) : \det(A) = 1\}.$$

Show that H is a subgroup of $GL_2(\mathbb{R})$.

3. (10 marks)

- (a) (4 marks) Construct a Cayley table of $(\mathbb{Z}_4, +_4)$.
- (b) (6 marks) Show that the group \mathbb{Z}_4 is isomorphic to the group $G = \{1, i, -1, -i\}$, where $i = \sqrt{-1}$ and G is the group under the complex multiplication.

4. (12 marks) Let $S_3 = \{e = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \varphi = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \psi = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, \alpha = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \beta = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}, \gamma = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \}$ be the symmetric group, and $K = \{e, \alpha\}$ a subset of the symmetric group S_3 .

- (a) (4 marks) Show K is a subgroup of S_3 .
- (b) (8 marks) Find all left cosets xK of K in S_3 .