MATHS 255

Assignment 5

Due: 26 August, 2003

Note: Please deposit your answers in the appropriate box outside the Student Resource Centre in the basement of the Mathematics/Physics building **by 4 pm on the due date.** Late assignments will not be marked. Use a Mathematics Department cover sheet which is available from outside the Resource Centre. PLEASE SHOW ALL WORKING.

1. Determine (with proofs or counterexamples) whether or not the following relation f defined on

 $\mathbf{Q}! \times \mathbf{Q}$ by $f = \{(m/n, n/m) : n, m \text{ non-zero integers}\} \cup \{(0, 1)\}$ is

- (a). a function from the set Q to the set Q. (Q =rational numbers.)
- (b). one-to-one

(c). onto

2. Let A and B be sets, and let $S \subseteq A \times B$. We define the *projection functions* on S by

 $\pi_1: S \rightarrow A, \ \pi_2: S \rightarrow B \text{ by } \pi_1(a,b) = a, \ \pi_2(a,b) = b.$

- (a) Show (using examples) that both of these functions are not necessarily either one-to-one or onto (i.e. four things to show).
- (b)Assume further that S is a function from A to B. Must it be true that π_1 is one-to-one? π_1 is onto? π_2 is one-to-one? π_2 is onto? Prove your answers.
- 3. Let $f : A \rightarrow B$ be a function, X and Y subsets of A, U and V subsets of B.
 - (a) Prove that $f^{-1}(U) \setminus f^{-1}(V) = f^{-1}(U \setminus V)$.
 - (b) Prove that $f(X) \setminus f(Y) \subseteq f(X \setminus Y)$.
 - (c) Show that $f(X) \setminus f(Y) = f(X \setminus Y)$ for all X and Y subsets of A if and only if f is one-to-one.