
MATHS 255	Assignment 4	Due: 19 August, 2003
WIATING 255	Assignment +	Duc. 17 August, 2005

Note: Please deposit your answers in the appropriate box outside the Student Resource Centre in the basement of the Mathematics/Physics building **by 4 pm on the due date.** Late assignments will not be marked. Use a Mathematics Department cover sheet which is available from outside the Resource Centre. PLEASE SHOW ALL WORKING.

1. A relation ρ on a set *S* is *antireflexive* if for each *x* in *S*, $x\rho x$ is false. A relation which is antireflexive and transitive is called a *quasi-order relation*. Prove that if \leq is a partial ordering on *S*, then the relation < defined by x < y if and only if $x \leq y$ and $x \neq y$ is a quasi-order relation.

2. The figures show the lattice diagrams of three posets.

- (a) What are the maximal elements of these posets?
- (b) What are the minimal elements of these posets?
- (c) Find all smallest elements of these posets.
- (d) Which elements cover the element *e*?
- (e) Find all upper bounds and all lower bounds of the set $\{p,n\}$.
- (f) Find each of the following if it exists:
 - $lub{d,c}$. $lub{w,y.v}$. $lub{p,k}$. $glb{a,g}$. $glb{p,n}$
- (g) Write down *all* of the pairs in the partial ordering represented by figure C.

3. Suppose that X is a poset with partial ordering \leq , and suppose that A is a subset of X. Let U be the set of all upper bounds of A. Show that if U has a greatest lower bound g, then g is a least upper bound of A.

4. (a) Let ~ be the relation defined on the complex numbers C by $z \sim w$ if |z - i| = |w - i|. Then ~ is an equivalence relation. Describe geometrically the equivalence class containing z = 4 + 4i.

(b) Let $A = \begin{pmatrix} 1 & -2 \\ 0 & 0 \\ -1 & 2 \end{pmatrix}$ and let ~ be the relation defined on the plane \mathbf{R}^2 by $(x, y) \sim (z, w)$ if

 $A\begin{pmatrix} x\\ y \end{pmatrix} = A\begin{pmatrix} w\\ z \end{pmatrix}$. Then ~ is an equivalence relation. Describe geometrically the equivalence class containing the point (*a,b*). How does it relate to NulA (the nullspace of A)?