	Department of Mathematics	
MATHS 255 SC 2003	Assignment 2	Due: 4pm, 5 August 2003

NB: Please deposit your solutions in the appropriate box by 4pm on the due date. Late assignments or assignments placed into incorrect boxes will not be marked. Use a blue Mathematics department cover sheet.

1. [8 marks] Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function for which $f(x) \neq 0$ for any $x \in \mathbb{R}$. Show that, for any $k \in \mathbb{R}$, there exists a unique function $g_k : \mathbb{R} \to \mathbb{R}$ so that $f(x) \cdot g_k(x) = k$ for every $x \in \mathbb{R}$.

[Hint: The proof requires two parts. First show that the function $g_k(x)$ exists, and then show that it is unique.]

- **2.** [4 marks] Explain why the the above statement is not true if $f(\alpha) = 0$ for some root α of f. [Hint: Consider what might 'go wrong' with different values of k.]
- **3.** [13 marks] A function $f : \mathbb{R} \to \mathbb{R}$ is called *odd* if for all x, f(-x) = -f(x). Similarly, a function is called even if for all x, f(-x) = f(x).

Consider the following statements:

- (a) If f(x) and g(x) are even functions, then $f(x) \cdot g(x)$ is an even function.
- (b) If f(x) and g(x) are odd functions, then f(x) + g(x) is an odd function.
- (c) There is a unique function which is both even and odd.

For each statement, give a proof (in any form you choose). State the type of proof you use. Also, for (a) and (b), either prove that the converse is true, or give a counterexample to the converse.

- **4.** [10 marks] Let A be the set $\{1, 2, 3, 4\}$ and B be the set $\{\{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}\}$.
 - (a) For each of the following statements about the sets A and B, state whether it is true or false.
 - (i) $2 \in A$ (iv) $B \subseteq \mathcal{P}(A)$ (vii) $A \cap B = \emptyset$
 - (ii) $A \subseteq B$ (v) $\{1,3\} \subset B$
 - (v) $(1, 0) \subseteq E$ (vi) $C \in B \implies C \subseteq A$ (viii) $\bigcup_{C \in B} C = A$ (iii) $A \in B$

(b) Use set builder notation to describe the B as a subset of $\mathcal{P}(A)$.

5. [6 marks] Given two sets A and B we define $A \oplus B = \{x : x \in A \text{ or } x \in B, \text{ but not both}\}$. Show that for any sets, the operation \oplus is commutative and associative.

TOTAL MARKS: 40