MATHS 255 Lecture outlines for week 9

Tuesday: The full symmetric group S_n

Related to the symmetry groups we discussed last week are the *full symmetric groups*. The group S_n is defined to be the set of all bijections (one-to-one and onto functions) from $\{1, 2, \ldots, n\}$ to itself. Again, the group operation is "composed with", in other words $f * g = f \circ g$.

Exercise 1. How many elements does S_n have?

We can represent the elements of S_n in matrix form, as follows. For our example, we will fix $n = 4$. We represent the element f by the 2×4 matrix which has $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$ as its first row and $[f(1) \quad f(2) \quad f(3) \quad f(4)]$ as its second row. For example the bijection which has $f(1) = 3$, $f(2) = 4$, $f(3) = 2, f(4) = 1$ is represented by the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{bmatrix}$. We can then work out the composition of two elements. For example, we have

$$
\begin{bmatrix} 1 & 2 & 3 & 4 \ 3 & 4 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 & 4 \ 4 & 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \ 1 & 2 & 4 & 3 \end{bmatrix}
$$

$$
\begin{bmatrix} 1 & 2 & 3 & 4 \ 4 & 3 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 1 & 2 & 3 & 4 \ 3 & 4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \ 2 & 1 & 3 & 4 \end{bmatrix}.
$$

and

To answer the previous exercise, we can see that there are n ways to fill in the first entry in row 2, $n-1$ ways to fill in the next, $n-2$ for the next and so on, giving a total of n! ways to write such a matrix. Thus $|S_n| = n!$.

Commutativity and abelian groups

For any real numbers x and y we have $x+y=y+x$. Thus the group operation in $(\mathbb{R}, +)$ is a commutative operation. However, there is no need for every group operation to be commutative. For example, looking back at the group D_4 of symmetries of the square, we have that $R_{90} * H = D'$, whereas $H * R_{90} = D$.

Definition. A group $(G, *)$ is abelian if $*$ is a commutative operation, and non-abelian otherwise.

So $(\mathbb{R}, +)$ is an abelian group whereas D_4 is a non-abelian group.

Notice that even if G is a non-abelian group, there will still be *some* elements x and y satisfying $x*y = y*x$. For example, this will be true if $x = y$, or if $x = e$ or $y = e$ (where e is the identity element).

Exercise 2. The elements of
$$
S_3
$$
 are $e = \begin{bmatrix} 1 & 2 & 3 \ 1 & 2 & 3 \end{bmatrix}$, $\varphi = \begin{bmatrix} 1 & 2 & 3 \ 2 & 3 & 1 \end{bmatrix}$ and $\psi = \begin{bmatrix} 1 & 2 & 3 \ 3 & 1 & 2 \end{bmatrix}$, $\alpha = \begin{bmatrix} 1 & 2 & 3 \ 2 & 1 & 3 \end{bmatrix}$,

$$
\beta = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}, \ \gamma = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix}.
$$
 Complete the Cayley table for S_3 .

$$
\begin{array}{c|cc} * & e & \varphi & \psi & \alpha & \beta & \gamma \\ \hline e & & \varphi & & \varphi \\ \hline & & \varphi & & \alpha & \beta & \gamma \\ \hline & & & \beta & & \gamma \\ & & & & \gamma & & \end{array}
$$

Find elements x and y such that $x * y \neq y * x$.

Proposition 3. Let n be an integer with $n \geq 3$. Then S_n is non-abelian.

Cycles in S_n

Definition. A cycle in S_n is an element of S_n such that there exist distinct $i_1, i_2, \ldots, i_k \in \{1, 2, \ldots, n\}$ with $f(i_j) = i_{j+1}$ for $1 \leq j < k$, $f(i_k) = i_1$ and $f(j) = j$ for $j \notin \{i_1, i_2, \ldots, i_k\}$. We denote this cycle by $(i_1 i_2 \ldots i_k).$

For example, in S_8 we have

 $(1\ 3\ 4\ 6) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 4 & 6 & 5 & 1 & 7 & 8 \end{bmatrix}.$

Exercise 4. Write the elements φ , ψ , α , β and γ of S_3 in cycle form.

Wednesday: Isomorphisms and homomorphisms

We have already used the word "isomorphism" in Section 5.4 of the textbook, when we said that two partially ordered sets (A, \preceq_A) and (B, \preceq_B) are *order-isomorphic* if there is a bijection $f : A \to B$ such that for every $x, y \in A$,

$$
f(x) \preceq_B f(y)
$$
 if and only if $x \preceq_A y$.

We can think of this as meaning that B is really just a "re-labelled" version of A, with exactly the same structure.

We can do the same thing for groups. In this case, the structure we have is not an order relation but a binary operation, but the idea—that the isomorphism should preserve the structure—is exactly the same.

Definition. Let $(G, *)$ and (H, \diamond) be groups. A homorphism from G to H is a function $f : G \to H$ such that for all $x, y \in G$,

$$
f(x * y) = f(x) \diamond f(y).
$$

An isomorphism from G to H is a homomorphism from G to H which is also a bijection. If there is such an isomorphism, we say that G and H are isomorphic, written $G \approx H$.

Example 5. Let $n \in \mathbb{N}$. The function $f : \mathbb{Z} \to \mathbb{Z}_n$ given by $f(x) = \overline{x}$ is a homomorphism, since for every $x, y \in \mathbb{Z}$ we have $\overline{x+y} = \overline{x} + \overline{y}$. However, it is not an isomorphism because it is not 1-1: we have $0 \neq n$ but $\overline{0} = \overline{n}$.

Example 6. Let $U(10) = \{1, 3, 7, 9\}$. We define an operation \diamond by declaring that, for $x, y \in U(10)$, $x \diamond y$ is the remainder modulo 10 of $x \cdot y$. Let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$, and define an operation $*$ on \mathbb{Z}_4 by declaring that $x * y = x + 4y$. So we have the Cayley tables

\diamond 1 3 7 9			\ast 0 1 2 3		
$\begin{array}{c ccccc}\n1 & 1 & 3 & 7 & 9\n\end{array}$			θ θ $\overline{1}$ $\overline{2}$ $\overline{3}$		
$3 \begin{array}{ ccc } 3 & 9 & 1 & 7 \end{array}$			$1 \begin{array}{ c c c c c } \hline 1 & 2 & 3 & 0 \\ \hline \end{array}$		
$7 \mid 7 \mid 1 \mid 9 \mid 3$			$2 \begin{array}{ccc} 2 & 3 & 0 & 1 \end{array}$		
$9 \begin{array}{ c c c c c } \hline g & g & \gamma & 3 & 1 \end{array}$			$3 \begin{array}{ c c c c c } 3 & 0 & 1 & 2 \end{array}$		

Then the function $f : \mathbb{Z}_4 \to U(10)$ given by $f(0) = 1$, $f(1) = 3$, $f(2) = 9$, $f(3) = 7$ is an isomorphism.

Proposition 7. Let G and H be groups with identity elements e_G and e_H respectively, and let $f: G \to H$ be a homorphism. Then $f(e_G) = e_H$.

Proposition 8. Let G and H be groups with identity elements e_G and e_H respectively, and let $f: G \to H$ be an isomorphism. Then, for every $x \in G$, we have

$$
f(x) \diamond f(y) = e_H \text{ if and only if } x * y = e_G.
$$

Exercise 9. Let G be the group given by the group table

Show that G is not isomorphic to \mathbb{Z}_4 .

Thursday: Subgroups

From now on we will use a convenient convention: we will omit the group operation symbol, just as when we are multiplying numbers we omit the \cdot . So for example we will write gh instead of $g * h$. We also write g^2 for gg, g^3 for ggg, g^{-3} for $(g^{-1})^3$ and so on.

Definition. A subgroup of a group $(G, *)$ is a subset H of G such that $*$ is a group operation on H.

Example 10. Z is a subgroup of the group $(\mathbb{R}, +)$.

Example 11. The set $H = \{R_0, R_{90}, R_{180}, R_{270}\}$ is a subgroup of D_4 .

Proposition 12. A subset H of a group G is a subgroup of G if and only if

- 1. $e \in H$ (where e is the identity element of G);
- 2. for any $x, y \in H$, $xy \in H$; and
- 3. for any $x \in H$, $x^{-1} \in H$.

Proposition 13. A subset H of a group G is a subgroup of G if and only if $H \neq \emptyset$ and, for every $x, y \in H$, $xy^{-1} \in H$.

Our goal for this section will be to prove *Lagrange's Theorem*. This is the statement that if G is a finite group and H is a subgroup of G then the number of elements of G is a multiple of the number of elements of H.

To prove this, we will show that we can use the subgroup H to form a partition of G . The number of elements in each set in the partition will be the same as the number of elements in H . Thus the number of elements in G is equal to the number of elements in H times the number of sets in the partition. And that's all there is to it! Of course, we have to check the details.

Definition. Let H be a subgroup of a group G, and let $a \in G$. We define the left coset of H in G containing a , written aH , by

$$
aH = \{ ah : h \in H \}.
$$

Lemma 14. Let H be a subgroup of G and let $a, b \in G$. If $aH \cap bH \neq \emptyset$ then $aH = bH$.

Lemma 15. Let H be a subgroup of G . Put

$$
\Omega = \{ aH \mid a \in G \}.
$$

Then Ω is a partition of G .

Lemma 16. Let H be a subgroup of G and let $a \in G$. Then the function $f_a : H \to aH$ defined by $f_a(h) = ah$ is a bijection.

Theorem 17. Let G be a finite group and let H be a subgroup of G. Then $|G|$ is a multiple of $|H|$.

Friday: review of class test