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MATHS 255 Lecture outlines for week 6

Tuesday: Binary operations

Binary operations

Definition. Let A be a set. A binary operation on A is a function from A× A to A. [We usually omit
the word “binary”.] A unary operation on A is a function from A to A.

We often use infix notation for binary operations. For example, if the operation is ∗, we write x∗y instead
of ∗(x, y).

Example 1. The most familiar operations are +, · on R (or Z or N or Q).

Example 2. The average operation given by

ave(x, y) =
x + y

2

is an operation on R.

Example 3. The exponentiation operationˆgiven by x ŷ = xy is an operation on N.

Example 4. Subtraction is not an operation on N, but it is an operation on Z. Division is not an
operation on R.

Example 5. Let A be a set. Then ∩, ∪ and \ are binary operations on P(A), and C
A is a unary operation

on P(A).

The symmetric difference 4 on P(A), defined by X4Y = (X ∪ Y ) \ (X ∩ Y ) is an operation.

Definition. An operation ∗ on A is commutative if for all x, y ∈ A we have x ∗ y = y ∗ x.

Exercise 6. Which of the above operations are commutative?

Definition. An operation ∗ on A is associative if for all x, y, z ∈ A we have x ∗ (y ∗ z) = (x ∗ y) ∗ z.

Exercise 7. Which of the above operations are associative?

Definition. Let ∗ be an operation on A. An identity element is an e ∈ A with the property that for all
x ∈ A, e ∗ x = x ∗ e = x.

Exercise 8. Which of the above operations have an identity element?

Wednesday: The Natural Numbers and the Integers

The Natural Numbers and the Integers [6.1]

Our next topic is Number Theory. This is the study of the arithmetic of the natural numbers N and the
integers Z. Although this might seem a very simple area, in fact there are some problems which have so
far been impossible to solve, despite being very easy to state. The simplest is probably the “Twin Prime

MATHS 255 Lecture outlines for week 6 Page 1 of 5



Conjecture”: the statement that there are infinitely many numbers n such that n and n + 2 are both
prime. Nobody knows whether this statement is true or false.

It is important to put the theory on a firm foundation: it would be a waste of time for me to convince
myself that I have a proof of the twin prime conjecture, and for me to try to convince you, only for you to
say that you disagree with my initial assumptions. So the first thing we do when we are studying number
theory is to give our axioms. In principle, at least, everything we prove in number theory should come just
from these axioms and not from our intuition of what the natural numbers look like (though, of course,
we may use our intuition to find the proof in the first place: the point is that the proof must not rely on
that intuition).

Our axioms for the natural numbers and integers are the following:

• N and Z are endowed with two commutative and associative operations, + and ·. (As usual, we
abbreviate a · b as ab). Multiplication distributes over addition, i.e. for all x, y, z ∈ Z we have
x(y + z) = xy + xz.

• We have two unique, distinct integers 0 and 1 with the properties that x + 0 = x for all x ∈ Z and
1x = x for all x ∈ Z (in other words, 0 is an identity for + and 1 is an identity for ·).

• Every m ∈ Z has an additive inverse, that is an integer −m with the property that m + (−m) = 0.
We abbreviate m + (−n) by m− n.

• N and Z have a total order ≤ which meshes with + in · in the following way: for any x, y, z ∈ Z,
x ≤ y ⇐⇒ x + z ≤ y + z and for any x, y ∈ Z and z ∈ N, x ≤ y iff xz ≤ yz. Further, n + 1 is an
immediate successor of n for each n ∈ Z, i.e. n < n + 1 and there is no z with n < z < n + 1.

• N satisfies the induction axiom: if S ⊆ N with 1 ∈ S and, for each s ∈ S, s + 1 ∈ S, then S = N.

• Z = N ∪ {0} ∪ {−n : n ∈ N }.

Every other property we need about N and Z can be deduced from these assumptions. For example, we
can prove that N = {n ∈ Z : 0 < n }. Of course we already knew this, so what is the point? The point is
that there is no alternative ordering, different from the standard one, which satisfies all the axioms but
has n < 0 for some n ∈ N.

Definition. A poset (A,�) is well-ordered if every non-empty subset has a least element. [Notice that if
{x, y} has a least element, then the least element is either x or y: if x is a least element then x � y and
if y is a least element then y � x. Thus, for every x, y ∈ A we have x � y or y � x, so a well-ordered set
is totally ordered.]

Example 9. (Z,≤) is bf not well-ordered, and neither is ([0, 1],≤).

Theorem 10 (Well ordering of N). N is well-ordered by the usual order ≤.

Proof. Let S ⊆ N. We must prove that if S 6= ∅ then S has a least element: by contraposition it is enough
to prove that if S has no least element then S = ∅. So suppose S has no least element. We prove by
complete induction that for all n ∈ N, n /∈ S, from which it follows that S = ∅.

The following follows from the well ordering of N:

Theorem 11. If S ⊆ Z is non-empty and bounded below then it has a least element. If S is non-empty
and bounded above then it has a greatest element.
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Thursday: Least common multiples and greatest common divisors

Divisibility in Z [6.2]

Theorem 12 (The Division Algorithm). For any m ∈ Z and n ∈ N, there exist unique integers q and
r with 0 ≤ r < n and m = qn + r. We call q the quotient and r the remainder when m is divided by n.

Proof. We have already seen that q and r exist in Assignment 3, Question 3. Actually, we only dealt with
the case when m > 0: we leave the cases m = 0 and m < 0 as an exercise.

For uniqueness, suppose q1, q2, r1, r2 ∈ Z with 0 ≤ r1, r2 < n and m = q1n+ r1 = q2n+ r2. We must show
that q1 = q2 and r1 = r2.

Rearranging the above, we know that (q1 − q2)n = r2 − r1.

Suppose for a contradiction that r1 6= r2. WLOG r1 < r2. So r2−r1 > 0, so (q1−q2)n > 0, so (q1−q2) > 0,
so (q1−q2) ≥ 1, so (q1−q2)n ≥ n. But then r2−r1 ≥ n, and yet r2−r1 ≤ r2−0 = r2 < n, a contradiction.
So we must have r1 = r2. But then we have (q1− q2)n = 0, and n 6= 0, so q1− q2 = 0, so q1 = q2 also.

Recall that the relation | is defined on Z by m | n iff there is some a ∈ Z with ma = n. This gives us a
partial order on N: more generally we have the following, for any a, b ∈ Z:

• a | a;

• 1 | a and −1 | a;

• a | 0;

• if b | a then b | (−a);

• if a | b and b 6= 0 then |a| ≤ |b|;

• if a | b and b | a then a = ±b;

• if a | b and b | c then a | c.

Thus | is a partial order on N. We have a special name for greatest lower bounds and least upper bounds
in this partial order.

Definition. Let a, b ∈ Z. We say that d is a common divisor of a and b if d | a and d | b. We say that
m is a common multiple of a and b if a | m and b | m. We say that a and b are relatively prime if a and
b have no positive common divisors other than 1.

Definition. Let a, b ∈ N. The set of common divisors of a and b is bounded above by a and is nonempty
(since it contains 1, so it has a greatest element. The set of positive common multiples of a and b is
bounded below by a and is nonempty (since it contains ab), so it has a least element. We call these,
respectively, the greatest common divisor of a and b, gcd(a, b), and the least common multiple of a and
b, lcm(a, b).

Theorem 13. Let a, b ∈ N. If c is a common divisor of a and b then c | gcd(a, b). If m is a common
multiple of a and b then lcm(a, b) | m.
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The Euclidean Algorithm [6.3]

Theorem 14. Let a, b, r ∈ N with a = qb + r. Then gcd(a, b) = gcd(b, r).

Proof. Exercise.

So, to find gcd(a, b), we can divide b into a, and reduce the problem to the simpler one of finding gcd(b, r).
To do this we divide r into b and get a simpler problem still. . . . This carries on until one of the remainders
is zero: of course if b = qa + 0, then gcd(a, b) = b.

Example 15. Find gcd(36, 15).

Solution. We have

36 = 2 · 15 + 6
15 = 2 · 6 + 3
6 = 2 · 3 + 0

The last non-zero remainder is 3, so gcd(36, 15) = 3.

Theorem 16. Let a, b ∈ N. Let d = gcd(a, b). Then there exist integers x and y such that d = ax + by.

Proof. Put
S = {n ∈ N : (∃x, y ∈ Z)(n = ax + by) }.

Then S is a non-empty subset of N, so it has a least element, k say. Since k ∈ S, we have k = ax + by for
some x, y.

Suppose, for a contradiction that k - a. So we can write a = qk + r with k, r ∈ Z and 0 < r < k. Then
r = a− qk = a− q(ax + by) = a(1− qx) + b(−qy), so r ∈ S, contradicting the assumption that k was the
least element of S. Wo we cannot have k - a, so k | a. Similarly, k | b.

Since k is a common divisor of a and b, k | d. So d = ck for some c. But then d = a(cx) + b(cy), so d ∈ S,
as required.

We can find x and y using an modified version of the Euclidean algorithm, where we write three columns,
n, x and y: each row represents an equation n = ax + by. Again, with the gcd(36, 15) example we get

n x y
36 1 0 r1

15 0 1 r2

6 1 −2 r3 = r1 − 2r2

3 −2 5 r4 = r2 − 2r3

0 5 −12 r5 = r3 − 2r4

From the second last row we see that gcd(36, 15) = 3 and that 3 = (−2) · 36 + 5 · 15. Incidentally the last
row shows us that lcm(36, 15) = 5 · 36 = 12 · 15.
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Friday: Prime numbers, relatively prime numbers and prime fac-
torization

Definition. A number p ∈ N is prime if p > 1 and p has no positive divisors other than 1 and p. A
number n is composite if n = ab for some a, b ∈ N with 1 < a, b < n. So every natural number greater than
1 is either prime or composite but not both. [NB the definition in the textbook includes 1 as a composite
number, but this is not standard.]

Theorem 17. Let r, s ∈ Z. Suppose r and s are relatively prime. Then r and r + s are relatively prime.

Theorem 18. Let a, b ∈ Z. Then a and b are relatively prime iff there exist x, y ∈ Z with ax + by = 1.

Theorem 19. Let a, b, c ∈ Z with a and b relatively prime. If a | bc then a | c.

Proof. Suppose a | bc. Then there is some z ∈ Z with bc = az. Also, we know that there exist x, y ∈ Z
with ax + by = 1. We have

c = c · 1 = c(ax + by) = a(cx) + (bc)y = a(cx) + (az)y = a(cx + zy).

Since cx + zy ∈ Z, a | c as required.

Theorem 20. Let p be a prime number, a, b ∈ Z. If p | ab then p | a or p | b.

Proof. Suppose p is prime and p 6| a. We must show that in that case, p | b. Now, gcd(a, p)|p, and the
only positive divisors of p are 1 and p. Since p 6| a, we cannot have gcd(a, p) = p, so gcd(a, p) = 1, in other
words a and p are relatively prime. So, by the previous result, since p | ab we have p | b, as required.

Theorem 21. If m1,m2, . . . ,mk are integers, p is a prime number and p | m1m2 · · ·mk then p | mi for
some i.

Proof. Use induction on k.

Theorem 22 (The fundamental theorem of arithmetic). Every natural number greater than 1 can
be written as a product of prime numbers, and that factorization is unique up to the order of the factors.
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