DEPARTMENT OF MATHEMATICS
MATHS 255 Lecture outlines for week 12

Tuesday: Differentiability

In today’s lecture we will learn exactly what it means for a function to be differentiable. Before
doing that, we will find a little more about limits.

Limits of products and quotients

Theorem 1. Let A C R, let f,g : A — R be functions, and let ¢ be an accumulation point
of A. If lim,_,. f(x) and hmxﬂcg( ) both exist then limy_,. f(x)g(x) exists and is equal to

lim, . f(x) limg_.. g(z).

Proof. Let F = lim,_,. f(z) and G = lim,_,.g(x). Put n = m Choose 6109 > 0 so that if

0 < |z —c| < & then |f(z) — F| <nand if 2 € A with 0 < |z — ¢| < 05 then [g(z) — G| < min{n, 1}.
Note that if 2 € A with 0 < |z —¢| < &> then [g(z) — G| < 3 so |g(z) < |G|+ 3. Put § = min{dy, &>}
Let z € A with 1 < |z —¢| < §. Then

[f(2)g(x) — FG| = [f(x)g(x) - Fg( )+ Fy(z) — FG|
<|f(z)g(x) — Fg(z)| + |Fg(x) — FG| (triangle inequality)
= [f(z) - FHQ( )|+ [Fllg(z) — G
<0Gl + 3) + | Fln
=¢
Thus lim,_.. f(x)g(x) exists and equals F'G. O

Note that we might be a little lazy and write this as “lim,_.. f(2)g(z) = lim,—. f(x) limz—. g(z)”.
However, we must remember that limits need not exist, and the existence of the limit is part of
the assertion. Also the converse does not hold: it is quite possible for lim,_,. f(z)g(x) but neither
lim, . f(z) nor lim,_,. g(x) to exist.

Theorem 2. Let A CR, let f: A — R be a function, and let ¢ be an accumulation point of A. If

lim,_.. f(z) exists and is non-zero then lim,_,. ﬁ exists and is equal to m

Proof. Exercise. Note that we need to choose § small enough to ensure that f(x) is non-zero within
a distance of § from c¢: in fact we will want to ensure that f( ) does not get too large—say, does
not get larger than 2F where F' = lim,_,. f(x )—so we will choose § small enough to ensure that
|f(z)— F| < £, which ensures that |f(z)| > |F — £|. See the proof that if b, — B # 0 then 7 " -+
in the notes for week 11 for more ideas. O
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Exercise 3. Let A CR, let f,g: A — R be functions, and let ¢ be an accumulation point of A. If
lim, . f(z) and lim,_.. g(x) both exist then lim,_,. f(x) + g(x) exists and is equal to lim,_,. f(z)+
lim, . g(z).

Differentiability

Definition. Let A C R. Ifc € A, we say that ¢ is an interior point of A if there is some ¢ > 0
such that B:(c) C A. We denote the set of interior points of A by int(A).

Thus A is open if and only if every point of A is an interior point of A, i.e. if A = int(A).

Definition. Let A C R, let f : A — R be a function and let ¢ € int(A). We say that f is
differentiable at c¢ if lim,_.. w exists, or equivalently if limy_,q M exists. If the limit
exists, we denote it by f'(c), and call this number the derivative of f at c. For S C int(A) we say
that f is differentiable on S if f is differentiable at all ¢ € S. When A is open we say that f is

differentiable if it is differentiable on A.

Example 4. Define f : R — R by f(z) = 2. Then f is differentiable and, for all c € R, f'(c) = 2c.

Proof. For all h # 0 we have

fle+h)—f(c) (c+h)?-¢?

h h
_ 2+ 2ch + h? — 2
a h
_ 2ch + h
a h
=2c+h
Now limj_.g2c + h = 2¢, so f'(c) exists and equals 2¢, as required. O

Theorem 5. Let ACR, let f: A — R be a function and let ¢ € int(A). If f is differentiable at c
then f is continuous at c.

Proof. Suppose f is differentiable at ¢. Then limxﬁcw exists and equals f'(c). We also
have lim,_..(z — ¢) exists and equals 0. So by Theorem 1, lim,_,. %(m — ¢) exists and equals
f(c)-0=0. So limz_.(f(z) — f(c) =0, so limy_.. f(z) = f(c), so f is continuous at c. O
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Wednesday: Rolle’s Theorem and the Mean Value Theorem

Lemma 6. Let a,b € R with a < b, and let f : [a,b] — R be continuous. Then f is bounded and
attains its bounds. In other words, there exist ¢,d € [a,b] with f(c) = max{ f(z) : € [a,b] } and

f(d) =min{ f(x) : x € [a,b] }.

Proof. First we will show that f is bounded. Suppose, for a contradiction, that f is unbounded
above. For each n € N we can find some z,, € [a,b] with f(z,) > n. Now the sequence (z,) is
bounded, so it has a convergent subsequence, (x;,) say. Let x be the limit of this subsequence. Since
(xy) is a sequence in [a,b], which is closed, we have x € [a,b]. But then f(x;,) converges to f(x),
which is impossible because (f(x;,)) is an unbounded sequence.

Similarly, f is bounded below.

Put s = sup{ f(z) : € [a,b] }. For every n, there is some y, € [a,b] with s — 1 < f(y,,) < s.
Then (y,) is a bounded sequence in [a, b], so it has a subsequence (y;,) which converges to some
¢ € [a,b]. By continuity, (f(y;n)) converges to f(c). But, by construction, (f(y;,) converges to s.

So f(c) =s=sup{ f(z) : z € [a,b] }. So f(c) =max{ f(z):x € [a,b] }.
Similarly, f attains its infimum. O

Definition. Let ACR, let f: A — R be a function and let a € A. Then a is a local maximum of
f if there is some € > 0 such that for all x € A with |x — a| < & we have f(x) < f(a). Similarly,
a is a local minimum of f if there is some € > 0 such that for all x € A with |x — a|] < & we have

f(@) = f(a).

Theorem 7. Let A CR, let f: A — R be a function and let a € int A. If f'(a) exists and a is a
local mazimum or local minimum of f then f'(a) = 0.

Proof. Exercise. O

Note that we need both f’(a) exists and a € int(A) as hypotheses here: consider the examples
f :1]0,1] — R given by f(x) = z, which has 1 as a local maximum, and g : R — R given by
g(x) = |x| which has 0 as a local minimum.

Theorem 8 (Rolle’s Theorem). Let a,b € R with a < b. Let f : [a,b] — R be continuous, and
differentiable on (a,b). Suppose f(a) = f(b). Then there is some ¢ € (a,b) with f'(c) = 0.

Proof. Put k = f(a) = f(b). We know that f is continuous on [a,b] so it attains its maximum at
some ¢ € [a,b]. Suppose first that ¢ # a and ¢ # b. Then ¢ € (a,b), so ¢ is a local maximum of f,
and f’(c) exists, so by the previous result we must have f’(c) = 0.

Similarly, we know that f attains its minimum at some d € [a, b], and if d # a,b then d € (a,b) and

f'(d) =0
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The only remaining possibility is that ¢, d € {a, b}. But then we must have f(z) = k for all x € [a, b],
so f/(x) =0 for all z € (a,b). O

Theorem 9 (Mean Value Theorem). Let a,b € R with a < b and let f : [a,b] — R be continuous,
and differentiable on (a,b). Then there is some ¢ € (a,b) with f'(c) = w

Proof. Put k = f(bl)):g(a) and define g : [a,b] — R by g(x) = f(z) — kx. Then g is continuous on
[a,b] and differentiable on (a,b), with ¢'(z) = f/(x) — k. Also

o(6) — gla) = £(8) ~ kb~ (@) ~ ka
= (/(0) ~ f(@)) ~ k(b —a)
= (1) - flay) - TO =D
=0,

so g(a) = g(b). Hence by Rolle’s Theorem there is some ¢ € (a,b) with ¢’(¢) = 0. But then
f'(c) —k=0,so f'(c) =k, as required. O
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