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MATHS 255 Lecture outlines for week 11

Tuesday: Subsequences and monotonic sequences

Subsequences [5.5]

A subsequence of a sequence (sn) is a sequence formed by taking certain terms from the original
sequence, in the same order as they appeared in the original sequence. For example, if we have the
sequence 1, 1

2 , 1
3 , 1

4 , . . . then we may form the subsequence 1, 1
4 , 1

9 , 1
16 , . . . . More precisely, we have

the following definition.

Definition. A subsequence of a sequence (sn) is a sequence (sin), where (in) is a strictly increasing
sequence in N.

Lemma 1. If (in) is a strictly increasing sequence in N then for all n ≤ in, n ≤ in.

Proof. Exercise (Assignment 5, Question 5).

Proposition 2. Let (sn) be a sequence in R, and (sin) a subsequence of (sn). If sn → L as n →∞
then sin → L as n →∞.

Proof. Suppose sn → L as n →∞. Let ε > 0. Choose N ∈ N such that if n > N then |sn −L| < ε.
Now let n > N . Then in ≥ n > N , so in > N , so |sin − L| < ε.

Theorem 3. Let (sn) be a monotonic bounded sequence in R. Then (sn) converges to some L ∈ R

Proof. Suppose first that (sn) is increasing. The set S = { sn : n ∈ N } is non-empty (since s1 ∈ S)
and bounded above, so it has a least upper bound, L say. We claim that sn → L as n → ∞. So
let ε > 0. Then there is some s ∈ S with L − ε < s ≤ L. Now, s ∈ S so s = sN for some N ∈ N.
Let n > N . Then sN ≤ sn, since (sn) is increasing, so we have L − ε < sN ≤ sn ≤ L < L + ε, so
L− ε < sn < L + ε, so |sn − L| < ε. Thus sn → L, as claimed.

We leave the case when (sn) is a decreasing sequence as an exercise.

Theorem 4. Let (sn) be a sequence in R. Then (sn) has a subsequence which is monotonic.

The idea is as follows: we give a method for constructing an increasing subsequence in (sn), which
will work unless some particular thing goes wrong. We will then give an alternative method which
gives a decreasing subsequence, and which will work if that particular thing went wrong with the
first method.

Lemma 5. Let (sn) be a sequence in R with no greatest term. Then (sn) has an increasing subse-
quence.
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Proof. We construct the subsequence (sin) recursively. The sequence has the property that

for all j, k ∈ N, if j ≤ ik then sj ≤ sik . (∗)

First we let i1 = 1. This certainly satisfies (∗) since there is no j with j < 1. Now suppose we have
chosen i1 < i2 < · · · < in satisfying (∗). We know that sin is not the greatest term in the sequence,
since there is no greatest term, so there is some m with sin < sm. However, sj ≤ sin for all j ≤ in,
so if sin < sm then m > in. We let in+1 be the least m > in with sin ≤ sm. We must check that
this choice also satisfies (∗). We have assumed that it is satisfied for all iks for k ≤ n, so we only
need to check it for in+1. So suppose j < in+1. If j ≤ in then sj ≤ sin ≤ sin+1 . If in < j < in+1

then, since in+1 was the least m with sin ≤ sm, we must have sj < sin ≤ sin+1 .

Clearly, the subsequence (sin) we have constructed is an increasing sequence, as required.

Proof of Theorem 4. Let (sn) be a sequence in R. There are two possibilities: either there is an
n ∈ N such that { sm : m > n } has no greatest element, or there is no such n. In the latter case,
for every n ∈ N, { sm : m > n } has a greatest element.

Case 1: Suppose there is some n0 such that { sm : m > n0 } has no greatest element. For each
k, put tk = sn0+k. Then (tk) has no greatest element, so by the previous lemma it has an
increasing subsequence (tik). But then (sn0+ik) is an increasing subsequence of (sn).

Case 2: Suppose that for every n ∈ N, { sm : m > n } has a greatest element. Recursively choose
a subsequence of (sn) as follows: i1 is chosen so that si1 ≥ sm for all m > 1, and once
i1 < i2 < · · · < in have been chosen, in+1 is chosen so that in < in+1 and sin+1 ≥ sm for all
m > n. Since { sm : m > n } always has a greatest element, we can always find such i1 and
in+1. It remains only to show that this gives a decreasing subsequence. Note that for each n
we have that sin is the greatest element of { sm : m > k } for some k < in, so sin ≥ sm for all
m > k. In particular, since k < in < in+1, sin ≥ sin+1 as required.

Wednesday: Cauchy sequences

We know what it means to say that (sn) converges to L. To say that (sn) converges means that
(sn) converges to some L, i.e.

(∃L)(∀ε > 0)(∃N ∈ N)(∀n > N)(|sn − L| < ε).

This is rather complicated: it has an extra layer of complexity with the extra change between ∃ and
∀ quantifiers. It is also awkward to check, since we have to find the limit L before we can check
that the condition holds. An alternative property, which only mentions the sequence itself and not
its possible limit, is the “Cauchy convergence criterion”:

Definition. A sequence (sn) in R is a Cauchy sequence if for all ε > 0 there exists N ∈ N such
that for all m,n > N , |sm − sn| < ε.
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We will prove that a sequence (sn) in R converges if and only if it is a Cauchy sequence.

Lemma 6 (The Triangle Inequality). Let a, b ∈ R. Then |a + b| ≤ |a| + |b|, and hence, if
x, y, z ∈ R then |x− z| ≤ |x− y|+ |y − z|.

Proof. Exercise (Regular Tutorial 5, Questions 1 and 2).

Proposition 7. Let (sn) be a sequence in R. If (sn) converges then (sn) is bounded.

Proof. Suppose sn → L as n →∞. Putting ε = 1
2 , we know that there is some N ∈ N such that if

n > N then |sn − L| < 1
2 . So, for n > N we have

|sn| = |(sn − L) + L| ≤ |sn − L|+ |L| < |L|+ 1
2 .

Thus for every n we have |sn| ≤ max{|s1|, |s2|, . . . , |sN |, |L|+ 1
2 }. So (sn) is bounded.

Lemma 8. Let (sn) be a bounded sequence. Then (sn) has a convergent subsequence.

Proof. We know that any sequence in R has a monotonic subsequence, and any subsequence of a
bounded sequence is clearly bounded, so (sn) has a bounded monotonic subsequence. But every
bounded monotonic sequence converges. So (sn) has a convergent subsequence, as required.

Lemma 9. Let (sn) be a Cauchy sequence in R. If (sn) has a convergent subsequence then (sn)
converges.

Proof. Let (sin) be a subsequence which converges to L. Let ε > 0. Put η = ε/2. Choose N1 so
that if m,n > N1 then |sm − sn| < η, choose N2 so that if n > N2 then |sin − L| < η, and choose k
so that k > N2 and ik > N1 (for example, we may take k = max{N1 + 1, N2 + 1}: certainly k > N2

and ik ≥ k > N1). Put N = N1. Then

|sn − L| = |sn − sik + sik − L|
≤ |sn − sik |+ |sik − L| (triangle inequality)
< η + |sik − L| (since n, ik > N1)
< η + η (since k > N2)
= ε.

Thus |sn − L| < ε as required. So (sn) converges to L.

Lemma 10. Every Cauchy sequence in R is bounded.

Proof. Exercise.

Lemma 11. Every convergent sequence in R is Cauchy.

Proof. Exercise.
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Putting these results together gives our main result:

Theorem 12. A sequence in R is a Cauchy sequence if and only if it converges.

Limits of sums and products

Theorem 13. Let (an), (bn) be sequences in R. Suppose that an → A and bn → B as n → ∞.
Then

1. an + bn → A + B as n →∞;

2. anbn → AB as n →∞; and

3. if bn 6= 0 for all n and B 6= 0 then an
bn
→ A

B as n →∞.

Proof. For (1), let ε > 0. Put η = ε/2. Choose N1, N2 ∈ N such that if n > N1 then |an − A| < η
and if n > N2 then |bn −B| < η. Put N = max{N1, N2}. Let n > N . Then

|(an + bn)− (A + B)| = |(an −A) + (bn −B)|
≤ |an −A|+ |bn −B| (triangle inequality)
< η + η (since n > N1 and n > N2)
= ε.

so an + bn → A + B as n →∞.

For (2), let ε > 0. Since (bn) converges, it is bounded, so there is some P > 0 with |bn| < P for all
n. Put η = ε

|A|+P . Choose N1, N2 ∈ N such that if n > N1 then |an − A| < η and if n > N2 then
|bn −B| < η. Put N = max{N1, N2}. Let n > N . Then

|anbn −AB| = |anbn −Abn + Abn −AB|
≤ |anbn −Abn|+ |Abn −AB| (triangle inequality)
= |an −A||bn|+ |A||bn −B|
= |an −A|P + |A||bn −B|
< ηP + |A|η
= ε

Thus anbn → AB as n →∞.

For (3), we will first prove that 1
bn
→ 1

B and then apply 2. So let ε > 0. Put η = |B|2ε
2 . Since B 6= 0,

|B|
2 > 0, so there is some N1 such that if n > N1 then |bn − B| < |B|

2 . Note that if n > N1 then

|bn| > |B| − |B|
2 = |B|

2 , so
∣∣∣ 1
bn

∣∣∣ < 2
|B| . Choose N2 ∈ N such that if n > N2 then |bn − B| < η. Put

MATHS 255 Lecture outlines for week 11 Page 4 of 8



N = max{N1, N2}. Let n > N . Then∣∣∣∣ 1
bn

− 1
B

∣∣∣∣ =
∣∣∣∣B − bn

bnB

∣∣∣∣
=

∣∣∣∣ 1
bn

∣∣∣∣ ∣∣∣∣ 1
B

∣∣∣∣ |B − bn|

<
2
|B|

1
|B|

|bn −B|

<
2

|B|2
η

= ε,

so 1
bn
→ 1

B as n →∞. The result then follows by (2).

Thursday: Continuous functions

Definition. Let A ⊆ R, let f : A → R be a function, and let a ∈ A. Then f is continuous at a if
for every ε > 0 there is a δ > 0 such that for all x ∈ A, if |x − a| < δ then |f(x) − f(a) < ε. We
say that f is continuous if it is continuous at a for all a ∈ A.

Example 14. Let f : R → R be given by f(x) = x2, and let a ∈ R. Then f is continuous at a.

Proof. Let ε > 0. Put δ = min{1, ε
2|a|+1}. Let x ∈ R with |x− a| < δ. Put h = x− a, so x = a + x.

Then

|f(x)− f(a)| = |f(a + h)− f(a)|
= |(a + h)2 − a2|
= |a2 + 2ah + h2 − a2|
= |2ah + h2|
= |2a + h||h|
≤ (|2a|+ |h|)|h|
≤ (2|a|+ 1)|h| (since |h| < 1)
< (2|a|+ 1)δ
= ε,

as required.

Example 15. Define f : R → R by f(x) = sin
(

1
x

)
for x 6= 0, f(0) = 0. Then f is not continuous

at 0.

Proof. Suppose for a contradiction that f is continuous at 0. Then, since 1
2 > 0, there is some

δ > 0 such that if |x − 0| < δ then |f(x) − f(0)| < 1
2 . Choose n ∈ N with n > 1

2

(
2
πδ − 1

)
. Then

2n+1 > 2
πδ , so (2n+1)π

2 > 1
δ , so 2

(2n+1)π < δ. Put x = 2
(2n+1)π . Then |x| < δ, so |f(x)| < 1

2 . However,
f(x) = sin

(
(2n + 1)π

2

)
, so f(x) = ±1, so |f(x)| = 1 ≮ 1

2 . This contradiction shows that there is no
such δ, and hence f is not continuous at 0.
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The intermediate value theorem

Theorem 16 (The intermediate value theorem). Let f : [a, b] → R be continuous, and let
k ∈ R with f(a) < k < f(b). Then there is some c ∈ (a, b) with f(c) = k.

Proof. Put S = {x ∈ [a, b] : f(x) < k }. Then a ∈ S so S 6= ∅, and S is bounded above by b, so S
has a supremum. Put c = supS.

Claim: f(c) ≮ k.

For: Suppose for a contradiction that f(c) < k. Put ε = k − f(c), and choose δ > 0 so that
if x ∈ [a, b] with |x − c| < δ then |f(x) − f(c)| < ε. Note that if |f(x) − f(c)| < ε then
f(x) − f(c) < ε = k − f(c), so f(x) < f(c). Thus |b − c| ≮ δ, so c + δ ≤ b. Put x = c + δ

2 .
Then x > c = supS, so x /∈ S. However, f(x) < f(c) + ε = k, and x ∈ [a, b], so x ∈ S. This
contradiction showws that we cannot have f(c) < k.

Claim: f(c) ≯ k.

For: Suppose for a contradiction that f(c) > k. Put ε = f(c) − k. Choose δ > 0 such that if
x ∈ [a, b] with |x − c| < δ then |f(x) − f(c)| < ε. Since δ > 0 and c = sup S, there is some
x ∈ S with c − δ < x ≤ c. But then |x − c| < δ, so |f(x) − f(c)| < ε, so f(x) − f(c) > −ε =
−(f(c) − k) = k − f(c). Thus f(x) > k. But this contradicts the assumption that x ∈ S so
f(x) < k. Hence there is no such x and therefore we cannot have f(c) > k.

Thus we cannot have f(c) < k or f(c) > k, so f(c) = k, as required. Finally, note that since a ∈ S
and b is an upper bound for S, a ≤ supS ≤ b, i.e. a ≤ c ≤ b. Since f(a) 6= f(c) 6= f(b) we have
a 6= c 6= b so a < c < b, i.e. c ∈ (a, b) as required.

Friday: Continuity in terms of limits, open and closed sets and
sequences

Limits of functions

Definition. Let a ∈ R and let ε > 0. We define the ε-ball centred at a, Bε(a), by

Bε(a) = {x ∈ R : |x− a| < ε },

and the deleted ε-ball centred at a, B′
ε(a), by B′

ε(a) = Bε(a) \ {a}.

Definition. Let A ⊆ R and let a ∈ R. Then a is a limit point of A if, for every ε > 0, Bε(a)∩A 6= ∅,
and a is an accumulation point of A if for all ε > 0, B′

ε(a) ∩A 6= ∅.

Definition. Let A ⊆ R, let f : A → R be a function, let a be an accumulation point of A and let
L ∈ R. We say that limx→a f(x) = L if for all ε > 0 there is a δ > 0 such that for all x ∈ A, if
0 < |x− a| < δ then |f(x)− L| < ε.
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Notice the big difference between the definition of a limit and the definition of continuity: we insist
that 0 < |x− a| < δ, in other words we do not test whether |f(x)− L| < ε holds at x = a, only at
values of x close to but not exactly equal to a. Thus, for example limx→0

sin x
x makes sense without

having to explain that we never intend to evaluate sin 0
0 .

Example 17. Define the function f : R → R by f(x) = x if x /∈ Z, f(x) = 0 if x ∈ Z. Then
limx→2 f(x) = 2.

The two definitions, continuity and limits, fit together by the following result.

Theorem 18. Let A ⊆ R and let f : A → R be a function. Then f is continuous if and only if, for
every a ∈ A, if a is an accumulation point of A then limx→A f(x) = f(a).

Proof. Exercise.

Open and closed sets

Definition. A subset U of R is open if for every x ∈ U there is some ε > 0 such that Bε(x) ⊆ U .
A subset C of R is closed if CC

R is open.

Proposition 19. Let C ⊆ R. Then C is closed if and only if, for every sequence (sn) in C, if
(sn) → a as n →∞ then a ∈ C.

Proof. Suppose first that C is closed. We must show that if (sn) is a convergent sequence in C
then the limit of the sequence is also in C. So suppose that sn → a as n → ∞. Suppose, for a
contradiction that a /∈ C. Then a ∈ CC, and CC is open, so there is an ε > 0 such that Bε(a) ⊆ CC.
Since sn → a, there is an N ∈ N such that for n > N , |sn − a| < ε. But then sN+1 ∈ Bε(a), so
sN+1 ∈ CC, contradicting the assumption that (sn) is a sequence in C. So we cannot have a /∈ C,
so a ∈ C.

Conversely, suppose that for every sequence in C, if sn → a then a ∈ C. Put U = CC. We must
show that U is open. So let a ∈ U . Suppose, for a contradiction, that there is no ε > 0 with
Bε(a) ⊆ U . In particular, for each n ∈ N we have B 1

n
(a) * U , so there is some sn ∈ B 1

n
(a) \U . But

then sn /∈ CC, so sn ∈ C.

Claim: sn → a as n →∞.

For: Let ε > 0. Choose N ∈ N with N > 1
ε . Then 1

N < ε. Let n ∈ N with n > N . Then 1
n < 1

N .
Since sn ∈ B 1

n
(a), |sn − a| < 1

n < 1
N < ε, so |sn − a| < ε as required.

Thus (sn) is a sequence in C which converges to a, but a /∈ C, contradicting our assumption about
C.

Lemma 20. Let f : R → R be a continuous function. For every open set U , f−1(U) is open.
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Proof. Let U be open, and let a ∈ f−1(U). Then f(a) ∈ U , so there is some ε > 0 such that
Bε(f(a)) ⊆ U . By continuity, there is some δ > 0 such that if |x− a| < δ then |f(x)− f(a)| < ε.

Claim: Bδ(a) ⊆ f−1(U).

For: Let x ∈ Bδ(a). Then |x− a| < δ, so |f(x)− f(a)| < ε, so f(x) ∈ Bε(f(a)) ⊆ U , so f(x) ∈ U ,
so x ∈ f−1(U), as required.

The converse is also true: to prove it, we first have to use the triangle inequality to prove that every
ε-ball Bε(a) is open.

Lemma 21. Let f : R → R be a function. Then f is continuous if and only if, for every sequence
(sn) in R, if sn → a as n →∞ then f(sn) → f(a) as n →∞.

Proof. Suppose first that f is continuous. Let (sn) be a sequence in R. Suppose sn → a as n →∞.
Let ε > 0. By continuity, there is some δ > 0 such that if |x− a| < δ then |f(x)− f(a)| < ε. Since
sn → a, there is some N such that if n > N then |sn − a| < δ. Let n > N . Then |sn − a| < δ, so
|f(sn)− f(a)| < ε, as required.

We leave the converse as an exercise.
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