DEPARTMENT OF MATHEMATICS
MATHS 255 Lecture outlines for week 11

Tuesday: Subsequences and monotonic sequences

Subsequences [5.5]

A subsequence of a sequence (sy) is a sequence formed by taking certain terms from the original
sequence, in the same order as they appeared in the original sequence. For example, if we have the
sequence 1, %, %, i, ... then we may form the subsequence 1, %, %, %, .... More precisely, we have
the following definition.

Definition. A subsequence of a sequence (sy,) is a sequence (s;,), where (iy) is a strictly increasing
sequence in N.

Lemma 1. If (i) is a strictly increasing sequence in N then for all n < i,, n < i,.

Proof. Exercise (Assignment 5, Question 5). O

Proposition 2. Let (s,) be a sequence in R, and (s;,) a subsequence of (sp). If s, — L asn — oo
then s;, — L as n — oo.

Proof. Suppose s,, — L as n — 0o. Let ¢ > 0. Choose N € N such that if n > N then |s, — L| < e.
Now let n > N. Then i, >n > N, so i, > N, so |s;, — L| < e. O

Theorem 3. Let (s,) be a monotonic bounded sequence in R. Then (s,,) converges to some L € R

Proof. Suppose first that (s,) is increasing. The set S = { s, : n € N} is non-empty (since s; € 5)
and bounded above, so it has a least upper bound, L say. We claim that s, — L as n — oco. So
let € > 0. Then there is some s € S with L —e¢ < s < L. Now, s € S so s = sy for some N € N.
Let n > N. Then sy < s,, since (s,) is increasing, so we have L — ¢ < sy < s, < L < L + ¢, so
L—e<s,<L+e¢,s0|s,— L|<e. Thus s, — L, as claimed.

We leave the case when (s,,) is a decreasing sequence as an exercise. O

Theorem 4. Let (sy,) be a sequence in R. Then (sy,) has a subsequence which is monotonic.

The idea is as follows: we give a method for constructing an increasing subsequence in (s,,), which
will work unless some particular thing goes wrong. We will then give an alternative method which
gives a decreasing subsequence, and which will work if that particular thing went wrong with the
first method.

Lemma 5. Let (sy,) be a sequence in R with no greatest term. Then (s,) has an increasing subse-
quence.
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Proof. We construct the subsequence (s;, ) recursively. The sequence has the property that
for all j,k € N, if j <4, then s; <'s;,. (%)

First we let i3 = 1. This certainly satisfies (%) since there is no j with j < 1. Now suppose we have
chosen i1 < iy < --- < iy, satisfying (x). We know that s;, is not the greatest term in the sequence,
since there is no greatest term, so there is some m with s; < s,,. However, s; < s;, for all j < i,
so if s;, < sy, then m > i,. We let i, be the least m > i, with s;, < s,,. We must check that
this choice also satisfies (x). We have assumed that it is satisfied for all igs for £ < n, so we only
need to check it for i,41. So suppose j < ipq1. If j <ip then s; <55, <55, . fi, < j <ipgr
then, since 4,11 was the least m with s;, < s;,,, we must have s; < s;, < s;,,,.

Clearly, the subsequence (s;,) we have constructed is an increasing sequence, as required. O

Proof of Theorem 4. Let (s,) be a sequence in R. There are two possibilities: either there is an
n € N such that {s,, : m > n} has no greatest element, or there is no such n. In the latter case,
for every n € N, { s, : m > n } has a greatest element.

Case 1: Suppose there is some ng such that {s,, : m > ng} has no greatest element. For each
k, put tx = Spo+x. Then (tx) has no greatest element, so by the previous lemma it has an
increasing subsequence (¢;,). But then (sy,+4,) is an increasing subsequence of (sy,).

Case 2: Suppose that for every n € N, {s,,, : m > n} has a greatest element. Recursively choose
a subsequence of (s,) as follows: i; is chosen so that s;; > s, for all m > 1, and once
i1 < iz < --- < i, have been chosen, 7,41 is chosen so that i, < i,41 and s;, , > s, for all
m > n. Since {s,, : m > n} always has a greatest element, we can always find such i; and
in+1. It remains only to show that this gives a decreasing subsequence. Note that for each n
we have that s; is the greatest element of { s,, : m > k} for some k < i,, so s;, > s, for all
m > k. In particular, since k < iy, < p41, S, = Si,,; as required.

Wednesday: Cauchy sequences

We know what it means to say that (s,) converges to L. To say that (s,) converges means that
(sn) converges to some L, i.e.

(3L)(Ve > 0)(3N € N)(¥n > N)(|spn — L| < €.

This is rather complicated: it has an extra layer of complexity with the extra change between 3 and
V quantifiers. It is also awkward to check, since we have to find the limit L before we can check
that the condition holds. An alternative property, which only mentions the sequence itself and not
its possible limit, is the “Cauchy convergence criterion”:

Definition. A sequence (s,) in R is a Cauchy sequence if for all e > 0 there exists N € N such
that for all m,n > N, |s, — s,| < €.

MATHS 255 Lecture outlines for week 11 Page 2 of 8



We will prove that a sequence (s,) in R converges if and only if it is a Cauchy sequence.

Lemma 6 (The Triangle Inequality). Let a,b € R. Then |a + b| < |a| + |b|, and hence, if
x,y,z €ER then |z — 2| < |z —y| + |y — 2|

Proof. Exercise (Regular Tutorial 5, Questions 1 and 2). O

Proposition 7. Let (s,) be a sequence in R. If (sy,) converges then (s,) is bounded.

Proof. Suppose s, — L as n — oco. Putting € = %, we know that there is some N € N such that if
n > N then |s, — L| < 3. So, for n > N we have

|snl = [(sn = L) + L| < |sn — L| + | L] < |L] + 3.
Thus for every n we have |s,,| < max{|s1],|s|,...,|sn|,|L| + 3 }. So (s,) is bounded. O

Lemma 8. Let (s,,) be a bounded sequence. Then (s,) has a convergent subsequence.

Proof. We know that any sequence in R has a monotonic subsequence, and any subsequence of a
bounded sequence is clearly bounded, so (s,) has a bounded monotonic subsequence. But every
bounded monotonic sequence converges. So (s,) has a convergent subsequence, as required. O

Lemma 9. Let (s,) be a Cauchy sequence in R. If (s,) has a convergent subsequence then (sy)
converges.

Proof. Let (s;,) be a subsequence which converges to L. Let ¢ > 0. Put n = £/2. Choose Nj so
that if m,n > Nj then |s,, — s,| < 7, choose N3 so that if n > Ny then |s;, — L| < n, and choose k
so that k > Ny and iy, > N; (for example, we may take k& = max{N; + 1, N + 1}: certainly k& > No
and i > k > Nj). Put N = Nj. Then

|sn — L| = |sp — Sip, T+ Si, — Lj
<|sp — S| + |si, — L] (triangle inequality)
<n+|si, — L (since m, i, > Ny)
<n+n (since k > N3)
=e.
Thus |s,, — L| < € as required. So (sy) converges to L. O

Lemma 10. Fvery Cauchy sequence in R is bounded.

Proof. Exercise. O

Lemma 11. FEvery convergent sequence in R is Cauchy.

Proof. Exercise. O
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Putting these results together gives our main result:

Theorem 12. A sequence in R is a Cauchy sequence if and only if it converges.

Limits of sums and products

Theorem 13. Let (a,), (b,) be sequences in R. Suppose that a,, — A and b, — B as n — oo.
Then

1. ap,+b, > A+ B asn — oo;
2. apb, — AB as n — 00; and

3. z'fbn#OforallnandB#Othen%—:a% as n — oo.

Proof. For (1), let € > 0. Put n = ¢/2. Choose Ny, N2 € N such that if n > N; then |a, — A| <7
and if n > Ny then |b, — B| < n. Put N = max{Ny, No}. Let n > N. Then

[(an +by) — (A+ B)| = |(an — A) + (bn, — B)|

<lan — A| + |b, — B| (triangle inequality)
<n-+n (since n > Ny and n > N)
=e.

so ap +b, — A+ B asn — oo.

For (2), let € > 0. Since (b,,) converges, it is bounded, so there is some P > 0 with |b,| < P for all
n. Put n = Wﬁ. Choose Np, Ny € N such that if n > Ny then |a, — A] < n and if n > Ny then

|b, — B| < n. Put N = max{Nj, Na}. Let n > N. Then

lanby, — AB| = |apb, — Ab,, + Ab, — AB|
< |anby, — Ab,| + |Ab, — AB]| (triangle inequality)
= |an — Allbn| + |Al[bn, — B
= |a, — A|P + |Al|b, — B]
<nP+|Aln

=¢
Thus a,b, — AB as n — oo.

For (3), we will first prove that i — % and then apply 2. Solet ¢ > 0. Put n = %. Since B # 0,

L’23| > 0, so there is some Nj such that if n > Nj then |b, — B| < @. Note that if n > Nj then

|bn| > |B| — @ = IL;', o ‘é’ < |—123|. Choose Ny € N such that if n > Ny then |b, — B| < n. Put
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N = max{Ny, Na}. Let n > N. Then

1
= bn|
2
|bn — B
1B !B\
< JR—
BE"
= 67
SO é — £ as n — oo. The result then follows by (2). O

Thursday: Continuous functions

Definition. Let A C R, let f: A — R be a function, and let a € A. Then f is continuous at a if
for every e > 0 there is a § > 0 such that for all x € A, if |x —a|] < 0 then |f(x) — f(a) <e. We
say that f is continuous if it is continuous at a for all a € A.

Example 14. Let f : R — R be given by f(x) = 22, and let a € R. Then f is continuous at a.

Proof. Let € > 0. Put 5:min{1,ﬁ}. Let x € R with |z —a|] <. Put h=2 —a, so x = a+ z.
Then
(@) - F(@)] = [f(a+h) - (@)

=|(a+h)* —a’|

= |a® + 2ah + h? — d?|

= |2ah + h?|

= |2a + h||h|

< ([2a[ +[R[)|n]
(2lal + 1)|A| (since |h| < 1)

<
< (2]a] +1)¢

Y

as required. ]

Example 15. Define f : R — R by f(z) = sm( ) forx #0, f(0) =0. Then f is not continuous
at 0.

Proof. Suppose for a contradiction that f is continuous at 0. Then, since % > 0, there is some

§ > 0 such that if [z — 0] < § then |f(z) — f(0)] < 1. Choose n € N with n > % (% —1). Then
2n+1> 2 so (2n+1) > 6,SOW < 4. Putxfm Then |z| <, s0 |f(x )] < i. However,

f(z) =sin ((2n + ) ), so f(z) = =£1, so |f(z)| =1 £ 1. This contradiction shows that there is no
such d, and hence f is not continuous at 0. O

MATHS 255 Lecture outlines for week 11 Page 5 of 8



The intermediate value theorem

Theorem 16 (The intermediate value theorem). Let f : [a,b] — R be continuous, and let
k € R with f(a) < k < f(b). Then there is some ¢ € (a,b) with f(c) = k.

Proof. Put S = {z € [a,b] : f(x) <k}. Thena € SsoS #0, and S is bounded above by b, so S
has a supremum. Put ¢ =sup S.

Claim: f(c) £ k.

For: Suppose for a contradiction that f(c) < k. Put ¢ = k — f(c), and choose § > 0 so that
if x € [a,b] with |x — ¢| < § then |f(x) — f(c)| < e. Note that if |f(x) — f(c)| < e then
f(x) = flc) <e=k— f(c),so f(x) < f(c). Thus |[b—c| £ d,s0c+0<b. Putx=c+ g.
Then x > ¢ =sup S, so x ¢ S. However, f(x) < f(c)+e =k, and = € [a,b], so x € S. This
contradiction showws that we cannot have f(c) < k.

Claim: f(c) # k.

For: Suppose for a contradiction that f(c) > k. Put ¢ = f(¢) — k. Choose § > 0 such that if
x € [a,b] with |x — ¢| < ¢ then |f(z) — f(c)| < e. Since § > 0 and ¢ = sup S, there is some
x € S with ¢ —0 < x < ¢. But then |z —¢| < 9, so |f(z) — f(c)| < e, s0 f(z) — f(c) > —e =
—(f(c) — k) = k— f(c). Thus f(x) > k. But this contradicts the assumption that € S so
f(x) < k. Hence there is no such z and therefore we cannot have f(c) > k.

Thus we cannot have f(c) < k or f(c) > k, so f(c) = k, as required. Finally, note that since a € S
and b is an upper bound for S, a < supS < b, i.e. a < ¢ <b. Since f(a) # f(c) # f(b) we have
a#c#bsoa<c<b,ie. cé€ (a,b) asrequired. O

Friday: Continuity in terms of limits, open and closed sets and
sequences

Limits of functions

Definition. Let a € R and let ¢ > 0. We define the e-ball centred at a, B.(a), by
B(a)={x€eR:|z—a|<e},
and the deleted e-ball centred at a, Bl(a), by B.(a) = B:(a) \ {a}.

Definition. Let A C R and let a € R. Then a is a limit point of A if, for everye > 0, B-(a)NA # 0,
and a is an accumulation point of A if for alle > 0, Bl(a) N A # 0.

Definition. Let A C R, let f: A — R be a function, let a be an accumulation point of A and let
L € R. We say that lim,—, f(x) = L if for all e > 0 there is a § > 0 such that for all x € A, if
0<|x—al < then|f(z)—L| <e.

MATHS 255 Lecture outlines for week 11 Page 6 of 8



Notice the big difference between the definition of a limit and the definition of continuity: we insist
that 0 < |z — a|] < §, in other words we do not test whether |f(x) — L| < € holds at = = a, only at
values of x close to but not exactly equal to a. Thus, for example lim,_,o #2£ makes sense without

. x
having to explain that we never intend to evaluate %.

Example 17. Define the function f : R — R by f(z) =z ifx ¢ Z, f(z) =0 if x € Z. Then
lim, o f(z) = 2.

The two definitions, continuity and limits, fit together by the following result.

Theorem 18. Let ACR and let f: A — R be a function. Then f is continuous if and only if, for
every a € A, if a is an accumulation point of A then lim,_ 4 f(z) = f(a).

Proof. Exercise. O

Open and closed sets

Definition. A subset U of R is open if for every x € U there is some € > 0 such that B:(z) C U.
A subset C of R is closed if C']g' S open.

Proposition 19. Let C C R. Then C is closed if and only if, for every sequence (sy) in C, if
(sn) — a as n — oo then a € C.

Proof. Suppose first that C' is closed. We must show that if (s,) is a convergent sequence in C'
then the limit of the sequence is also in C'. So suppose that s,, — a as n — oo. Suppose, for a
contradiction that a ¢ C. Then a € C®, and C° is open, so there is an & > 0 such that B.(a) C C°.
Since s, — a, there is an N € N such that for n > N, |s, —a| < . But then sy+1 € B:(a), so
sy41 € C° contradicting the assumption that (sn) is a sequence in C'. So we cannot have a ¢ C,
soae€C.

Conversely, suppose that for every sequence in C, if s, — a then a € C. Put U = C®. We must
show that U is open. So let a € U. Suppose, for a contradiction, that there is no ¢ > 0 with
B.(a) C U. In particular, for each n € N we have Bi(a) € U, so there is some s,, € Bi(a)\U. But

then s, ¢ C¢, so s, € C.

Claim: s, — a as n — oo.

1

For: Let € > 0. Choose N € N with N > % Then % <e. Let n € Nwithn > N. Then = < e

Since s, € B1(a), [sp —a| < 2 < % <&, so |s, —a| < ¢ as required.

1
n

Thus (s;,) is a sequence in C' which converges to a, but a ¢ C, contradicting our assumption about
C. O

Lemma 20. Let f : R — R be a continuous function. For every open set U, f=Y(U) is open.
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Proof. Let U be open, and let a € f~1(U). Then f(a) € U, so there is some ¢ > 0 such that
B:(f(a)) C U. By continuity, there is some ¢ > 0 such that if |z — a| < ¢ then |f(z) — f(a)| < e.

Claim: Bj(a) C f~1(U).

For: Let € Bs(a). Then |z —a| < J, so |f(z) — f(a)| < e, so f(z) € B:(f(a)) CU, so f(z) € U,
sox € f~1(U), as required.

O]

The converse is also true: to prove it, we first have to use the triangle inequality to prove that every
e-ball B.(a) is open.

Lemma 21. Let f: R — R be a function. Then f is continuous if and only if, for every sequence
(sp) in R, if s, — a as n — oo then f(s,) — f(a) as n — co.

Proof. Suppose first that f is continuous. Let (s,) be a sequence in R. Suppose s, — a as n — oc.
Let ¢ > 0. By continuity, there is some 6 > 0 such that if |x — a| < ¢ then |f(x) — f(a)| < e. Since
Sp — a, there is some N such that if n > N then |s, —a| < §. Let n > N. Then |s, —a|] < 4, so
|f(sn) — f(a)] < e, as required.

We leave the converse as an exercise. O
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