Solutions for Term Test

- 1. (a) "If n + 1 is prime then n is even".
 - (b) "If n + 1 is composite then n is odd".
 - (c) "*n* is even and n + 1 is composite".
- **2.** (a) Suppose *a* is even or *b* is even. If *a* is even, then a = 2k for some $k \in \mathbb{Z}$, so $a^2b = (2k)^b = 2(2k^2b)$, and $2k^2b \in \mathbb{Z}$, so a^2b is even. If *b* is even then b = 2j for some $j \in \mathbb{Z}$, so $a^2b = 2(a^2j)$ and $a^2j \in \mathbb{Z}$, so a^b is even in this case also. So either way, a^2b is even.
 - (b) Suppose, for a contradiction, that a^2b is even but neither a nor b is even. Then a and b are both odd, so a = 2k + 1 and b = 2j + 1 for some $k, j \in \mathbb{Z}$. But then

$$\begin{aligned} a^2b &= (2k+1)^2(2j+1) = (4k^2+4k+1)(2j+1) \\ &= 8k^2j+8kj+2j+4k^2+4k+1 = 2(4k^2j+4kj+j+2k^2+2k)+1 \end{aligned}$$

and $4k^2j + 4kj + j + 2k^2 + 2k \in \mathbb{Z}$, so a^2b is odd, contradicting our assumption that a^2b is even.

- **3.** (a) Suppose f is one-to-one. Let $x, y \in \mathbb{R}$ with g(x) = g(y). Then f(x+2) = f(y+2), so (since f is one-to-one) x + 2 = y + 2, so x = y. Hence g is one-to-one. Conversely, suppose g is one-to-one. Let $x, y \in \mathbb{R}$ with f(x) = f(y). Put x' = x - 2, y' = y - 2. Then x = x' + 2 and y = y' + 2, so f(x' + 2) = f(y' + 2), i.e. g(x') = g(y'). Thus x' = y', i.e. x - 2 = y - 2, so x = y. Hence f is one-to-one.
 - (b) Suppose that g is onto, and let $b \in \mathbb{R}$. Then there is some $a \in \mathbb{R}$ with g(a) = b. So f(a+2) = b. Put a' = a + 2. Then f(a') = b, as required.
- **4.** For $n \in \mathbb{N}$, let P_n be the statement " $n^2 + 3n + 1$ is odd".

Base case: for n = 1 we have $n^2 + 3n + 1 = 1 + 3 + 1 = 5$ which is odd, so P_1 is true.

Inductive step: let $n \in \mathbb{N}$, and suppose P_n is true. Then $n^2 + 3n + 1$ is odd, so $n^2 + 3n + 1 = 2k + 1$ for some k. But then

$$(n+1)^{2} + 3(n+1) + 1 = n^{2} + 2n + 1 + 3n + 3 + 1$$

= $(n^{2} + 3n + 1) + 2n + 4$
= $2k + 1 + 2n + 4$
= $2(k + n + 2) + 1$,

and $k + n + 2 \in \mathbb{Z}$, so $(n + 1)^2 + 3(n + 1) + 1$ is odd, so P_{n+1} is true.

Hence, by induction, P_n is true for all n.

5. Let $x \in X$. Then $x \mid a$ and $x \mid b$, so there exist $p, q \in \mathbb{Z}$ with a = px and b = qx. But then a + b = px + qx = (p+q)x, and $p + q \in \mathbb{Z}$, so $x \mid a + b$. Since we already know that $x \mid a$, we have $x \mid a \land x \mid b$, so $x \in Y$. Hence $X \subseteq Y$.

Conversely, let $y \in Y$. Then $y \mid a$ and $y \mid a + b$, so there exist $r, s \in \mathbb{Z}$ with a = ry and a + b = sy. Then b = (a + b) - a = sy - ry = (s - r)y, and $s - r \in \mathbb{Z}$, so $y \mid b$. Since we already knew that $y \mid a$ we have $y \in X$. Hence $Y \subseteq X$.

Combining these we have X = Y, as required.