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MATHS 255 Solutions to Assignment 9 Due: 21 May 2003

1. We may compute the Cayley Table either by working out the effects of doing one symmetry followed
by the other, or by observing that each of the operations is its own inverse, which lets us fill in the
entries on the diagonal of the Cayley Table and then using the “once per row and once per column”
rule to fill in the remaining entries. Either way, we get the Cayley Table

◦ R0 R180 V H

R0 R0 R180 V H
R180 R180 R0 H V
V V H R0 R180

H H V R180 R0

2. (a) We have α = (1 2 3 6)(4 5).

(b) We have βαβ−1 = (1 2 3)(1 2 3 6)(4 5)(3 2 1) = (1 6 2 3)(4 5).

3. We certainly have g◦f : G → K. Put h = g◦f : we must check that for all x, y ∈ G, h(xy) = h(x)h(y).
So, let x, y ∈ G. Then

h(xy) = g(f(xy))
= g(f(x)f(y)) (since f is a homomorphism)
= g(f(x))g(f(y)) (since g is a homomorphism)
= h(x)h(y),

as required.

4. Suppose first that f is one-to-one. [We will show that f−1({eH}) = {eG}.] Let x ∈ f−1({eH}). Then
f(x) ∈ {eH}, so f(x) = eH . We also have f(eG) = eH , since f is a homomorphism, so f(x) = f(eG),
and f is one-to-one so x = eG, so x ∈ {eG}. Thus f−1({eH}) ⊆ {eG}. Conversely, let y ∈ {eG}.
Then y = eG, so f(y) = f(eG) = eH , so f(y) ∈ {eH}, so y ∈ f−1({eH}). Thus {eG} ⊆ f−1({eH}),
so f−1({eH}) = {eG}.
Conversely, suppose that f−1({eH}) = {eG}. [We will show that f is one-to-one.] Let x, y ∈ G with
f(x) = f(y). Then

f(x)f(y)−1 = eH

f(x)f(y−1) = eH

f(xy−1) = eH ,

so f(xy−1) ∈ {eH}, so xy−1 ∈ f−1({eH}) = {eG}, so xy−1 = eG, so x = y. Thus f is one-to-one, as
required.
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5. (a) Put H = {e, x}.
Suppose first that H is a subgroup of G. Then, since x ∈ H we must have xx ∈ H, i.e.
x2 ∈ {e, x}, so x2 = e or x2 = x. We cannot have x2 = x, since x 6= e, so x2 = e as required.
Conversely, suppose that x2 = e. We must check that e ∈ H, that if g, h ∈ H then gh ∈ H, and
that if g ∈ H then g−1 ∈ H. Well, we certainly have e ∈ H. We consider all possible values of
g and h: ee = e ∈ H, ex = x ∈ H, xe = x ∈ H and x2 = e ∈ H. Finally, we have e−1 = e ∈ H
and x−1 = x ∈ H. Thus H is a subgroup, as required.

(b) Suppose first that G has an element x with x 6= e and x2 = e. Then H = {e, x} is a subgroup
of G, and by Lagrange’s Theorem that means that |H| divides |G|, i.e. 2 divides |G|, so |G| is
even.
Conversely, suppose that |G| is even. Put A = { g ∈ G : g2 6= e }.
Claim: if g ∈ A then g 6= g−1.
For: suppose, for a contradiction, that g ∈ A but g−1 = g. Then g−1g = gg, i.e. e = g2, so

g /∈ A, contradicting our assumption.
Claim: if g ∈ A then g−1 ∈ A.
For: suppose, for a contradiction, that g ∈ A but g−1 /∈ A. Then (g−1)2 = e, so (g−1)−1 = g−1,

i.e. g = g−1, contradicting the previous claim.

From this, we can see that A can be partitioned into a collection of disjoint pairs {g, g−1}. If
there are k such pairs, then |A| = 2k, so |A| is even. Since A ⊆ G we have |G \A| = |G| − |A|,
and |G| and |A| are both even, so |G \ A| is even. So |G \ A| is either 0 or at least 2. But
|G \A| 6= 0, since e ∈ G \A. So |G \A| ≥ 2, so there is at least one element in G \A besides e.
In other words, there is some x ∈ G with x 6= e and x2 = e, as required.

MATHS 255 Solutions to Assignment 9 Page 2 of 2


